380 research outputs found

    How microbial proteomics got started

    Full text link
    Publication in 1975 by Patrick O'Farrell of a procedure to separate the proteins of Escherichia coli in a two‐dimensional array on polyacrylamide gels marked the birth of the field now called proteomics. Although O'Farrell's contribution was soon to have wide ranging effects on research in many fields, the initial impact was greatest in the arena of whole cell physiology. Refinements and amplification of the original procedure, including improved standardization and reproducibility of gel patterns, introduction of techniques to measure the quantity of protein in individual spots, and biochemical identification of the protein spots, afforded investigators the ability to explore for the first time the integrated working of control circuits in the living cell. From O'Farrell's contribution has grown the rich array of techniques currently employed and still being developed in the diverse field of microbial proteomics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86821/1/2943_ftp.pd

    Positive regulatory gene for temperature-controlled proteins in Escherichia coli

    Full text link
    SummaryA group of nine proteins of Escherichia coli K12 vary in steady state level with growth temperature, and are particularly abundant above 40[deg]C. The identities of most of these HTP (high temperature production) proteins are unknown; they are primarily recognizable on two-dimensional polyacrylamide gels by their very high rates of synthesis during the ten-minute period following a shift-up in temperature. This stimulation, as much as 20-fold for some HTP proteins, is abolished by a conditionally lethal nonsense mutation in a chromosomal gene located at 75 minutes. Evidence suggests that this regulatory gene, htpR, makes an activator protein that is required for heat induction of HTP proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24372/1/0000641.pd

    Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation

    Get PDF
    Mycoplasma pneumoniae causes acute and chronic respiratory infections, including tracheobronchitis and community acquired pneumonia, and is linked to asthma and an array of extra-pulmonary disorders. Recently, we identified an ADP-ribosylating and vacuolating toxin of M. pneumoniae, designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we analysed CARDS toxin gene (annotated mpn372) transcription and identified its promoter. We also compared CARDS toxin mRNA and protein profiles in M. pneumoniae during distinct in vitro growth phases. CARDS toxin mRNA expression was maximal, but at low levels, during early exponential growth and declined sharply during mid-to-late log growth phases, which was in direct contrast to other mycoplasma genes examined. Between 7% and 10% of CARDS toxin was localized to the mycoplasma membrane at mid-exponential growth, which was reinforced by immunogold electron microscopy. No CARDS toxin was released into the medium. Upon M. pneumoniae infection of mammalian cells, increased expression of CARDS toxin mRNA was observed when compared with SP-4 broth-grown cultures. Further, confocal immunofluorescence microscopy revealed that M. pneumoniae readily expressed CARDS toxin during infection of differentiated normal human bronchial epithelial cells. Analysis of M. pneumoniae-infected mouse lung tissue revealed high expression of CARDS toxin per mycoplasma cell when compared with M. pneumoniae cells grown in SP-4 medium alone. Taken together, these studies indicate that CARDS toxin expression is carefully controlled by environmental cues that influence its transcription and translation. Further, the acceleration of CARDS toxin synthesis and accumulation in vivo is consistent with its role as a bona fide virulence determinant

    Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces

    Get PDF
    Limitation of different nutrients in Streptomyces coelicolor A3(2) triggers nutrient‐stress responses, mediated by PhoP, GlnR, AfsR and other regulators, that are integrated at the molecular level and control secondary metabolite biosynthesis and differentiation. In addition, utilization of chitin or N‐acetylglucosamine regulates secondary metabolite biosynthesis by a mechanism mediated by DasR. Phosphate control of primary and secondary metabolism in Streptomyces species is mediated by the two‐component PhoR–PhoP system. In S. coelicolor, PhoP controls secondary metabolism by binding to a PHO box in the afsS promoter overlapping with the AfsR binding site. Therefore, the afsS promoter serves to integrate the PhoP‐mediated response to phosphate limitation and AfsR‐mediated responses to other unknown environmental stimuli. Interestingly, phosphate control oversees nitrogen regulation but not vice versa. In ΔphoP mutants, expression of some nitrogen metabolism genes including glnA, glnII and glnK is increased. Phosphate control of these genes is exerted through binding of PhoP to the promoters of glnR (the global nitrogen regulator), glnA, glnII and the amtB–glnK–glnD operon. This regulation allows a ‘metabolic homeostasis’ of phosphate and nitrogen utilization pathways, preventing nutritional unbalances. Similar mechanisms of interaction between phosphate control and carbon catabolite regulation or between phosphate and DasR‐mediated N‐acetylglucosamine regulation appear to exist. Transport of N‐acetylglucosamine by the NagE2 permease and, therefore, regulation of secondary metabolism, is dependent upon the balance of phosphorylated/dephosphorylated proteins of the N‐acetylglucosamine phosphotransferase system. These findings provide the bases for understanding the mechanisms underlying systems biology of Streptomyces species

    Inactivation combined with cell lysis of Pseudomonas putida using a low pressure carbon dioxide microbubble technology

    Get PDF
    BACKGROUND Inactivation processes can be classified into non-thermal inactivation methods such as ethylene oxide and γ-radiation, and thermal methods such as autoclaving. The ability of carbon dioxide enriched microbubbles to inactivate Pseudomonas putida suspended in physiological saline, as a non-thermal sterilisation method, was investigated in this study with many operational advantages over both traditional thermal and non-thermal sterilisation methods. RESULTS Introducing carbon dioxide enriched microbubbles can achieve ∼2-Log reduction in the bacterial population after 90 min of treatment, addition of ethanol to the inactivation solution further enhanced the inactivation process to achieve 3, 2.5 and 3.5-Log reduction for 2%, 5% and 10 %( v/v) ethanol, respectively. A range of morphological changes was observed on Pseudomonas cells after each treatment, and these changes extended from changing cell shape from rod shape to coccus shape to severe lesions and cell death. Pseudomonas putida KT 2440 was used as a model of gram-negative bacteria. CONCLUSION Using CO2 enriched microbubbles technology has many advantages such as efficient energy consumption (no heat source), avoidance of toxic and corrosive reagents, and in situ treatment. In addition, many findings from this study could apply to other gram-negative bacteria

    Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP

    Get PDF
    Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP binds to the glnR promoter, encoding the major nitrogen regulator as shown by EMSA studies, but not to the glnRII promoter under identical experimental conditions. PhoP also binds to the promoters of glnA and glnII encoding two glutamine synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium transporter and two putative nitrogen sensing/regulatory proteins. Footprinting analyses revealed that the PhoP-binding sequence overlaps the GlnR boxes in both glnA and glnII. ‘Information theory’ quantitative analyses of base conservation allowed us to establish the structure of the PhoP-binding regions in the glnR, glnA, glnII and amtB genes. Expression studies using luxAB as reporter showed that PhoP represses the above mentioned nitrogen metabolism genes. A mutant deleted in PhoP showed increased expression of the nitrogen metabolism genes. The possible conservation of phosphate control over nitrogen metabolism in other microorganisms is discussed

    A proteogenomic analysis of Shigella flexneri using 2D LC-MALDI TOF/TOF

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New strategies for high-throughput sequencing are constantly appearing, leading to a great increase in the number of completely sequenced genomes. Unfortunately, computational genome annotation is out of step with this progress. Thus, the accurate annotation of these genomes has become a bottleneck of knowledge acquisition.</p> <p>Results</p> <p>We exploited a proteogenomic approach to improve conventional genome annotation by integrating proteomic data with genomic information. Using <it>Shigella flexneri </it>2a as a model, we identified total 823 proteins, including 187 hypothetical proteins. Among them, three annotated ORFs were extended upstream through comprehensive analysis against an in-house N-terminal extension database. Two genes, which could not be translated to their full length because of stop codon 'mutations' induced by genome sequencing errors, were revised and annotated as fully functional genes. Above all, seven new ORFs were discovered, which were not predicted in <it>S. flexneri </it>2a str.301 by any other annotation approaches. The transcripts of four novel ORFs were confirmed by RT-PCR assay. Additionally, most of these novel ORFs were overlapping genes, some even nested within the coding region of other known genes.</p> <p>Conclusions</p> <p>Our findings demonstrate that current <it>Shigella </it>genome annotation methods are not perfect and need to be improved. Apart from the validation of predicted genes at the protein level, the additional features of proteogenomic tools include revision of annotation errors and discovery of novel ORFs. The complementary dataset could provide more targets for those interested in <it>Shigella </it>to perform functional studies.</p

    Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments.</p> <p>Results</p> <p>We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system <it>E.coli </it>BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the <it>E.coli </it>cells via a phosphate limitation.</p> <p>Conclusions</p> <p>The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant <it>E.coli</it>-strains.</p

    Evidence for the adaptation of protein pH-dependence to subcellular pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of genome sequences, and inferred protein coding genes, has led to several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed following variations on a biomodal theme that originates from the predominant acid and base amino acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with environment, either for a whole organism or for subcellular compartments. There is also a tendency for isoelectric points averaged over a subcellular location to not coincide with the local pH, which could be related to solubility. We now calculate the correlation of other pH-dependent properties, calculated from 3D structure, with subcellular pH.</p> <p>Results</p> <p>For proteins with known structure and subcellular annotation, the predicted pH at which a protein is most stable, averaged over a location, gives a significantly better correlation with subcellular pH than does isoelectric point. This observation relates to the cumulative properties of proteins, since maximal stability for individual proteins follows the bimodal isoelectric point distribution. Histidine residue location underlies the correlation, a conclusion that is tested against a background of proteins randomised with respect to this feature, and for which the observed correlation drops substantially.</p> <p>Conclusion</p> <p>There exists a constraint on protein pH-dependence, in relation to the local pH, that is manifested in the pKa distribution of histidine sub-proteomes. This is discussed in terms of protein stability, pH homeostasis, and fluctuations in proton concentration.</p
    corecore