35 research outputs found

    Mise en évidence d'une hétérogénéité biochimique et moléculaire de l'inositol 1,4,5-trisphosphate 3-kinase

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Informations

    No full text
    Vanweyenbergh Claire. Informations. In: Communication et langages, n°55, 1er trimestre 1983. p. 123

    Purification and biochemical properties of a high-molecular-mass inositol 1,4,5-trisphosphate 3-kinase isoenzyme in human platelets.

    No full text
    The phosphorylation of inositol 1,4,5-trisphosphate (InsP3) to inositol 1,3,4,5-tetrakisphosphate (InsP4) is catalysed by InsP3 3-kinase. A method is presented for a rapid purification of the enzyme from human platelets. The purified enzyme was identified as a polypeptide of M(r) 69,000-70,000 after SDS/PAGE. It had a specific activity of 1.45 +/- 0.1 mumol/min per mg, and the degree of stimulation by Ca2+/calmodulin was 17-fold at saturating calmodulin and 10 microM free Ca2+. The Km for InsP3 and for ATP was 2.0 microM and 2.5 mM respectively. Human platelet InsP3 3-kinase was not recognized by immunodetection with anti-(InsP3 3-kinase A) or anti-(InsP3 3-kinase B) antibodies. These data provide the first biochemical evidence for the existence of a novel InsP3 3-kinase isoenzyme in human platelets, which is distinct from previously reported InsP3 3-kinase A and InsP3 3-kinase B

    D-myo-inositol 1,4,5-trisphosphate 3-kinase A is activated by receptor activation through a calcium:calmodulin-dependent protein kinase II phosphorylation mechanism.

    No full text
    D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] 3-kinase, the enzyme responsible for production of D-myo-inositol 1,3,4,5-tetrakisphosphate, was activated 3- to 5-fold in homogenates of rat brain cortical slices after incubation with carbachol. The effect was reproduced in response to UTP in Chinese hamster ovary (CHO) cells overexpressing Ins(1,4,5)P3 3-kinase A, the major isoform present in rat and human neuronal cells. In ortho-32P-labelled cells, the phosphorylated 53 kDa enzyme could be identified after receptor activation by immunoprecipitation. The time course of phosphorylation was very similar to that observed for carbachol (or UTP)-induced enzyme activation. Enzyme phosphorylation was prevented in the presence of okadaic acid. Calmodulin (CaM) kinase II inhibitors (i.e. KN-93 and KN-62) prevented phosphorylation of Ins(1,4,5)P3 3-kinase. Identification of the phosphorylation site in transfected CHO cells indicated that the phosphorylated residue was Thr311. This residue of the human brain sequence lies in an active site peptide segment corresponding to a CaM kinase II-mediated phosphorylation consensus site, i.e. Arg-Ala-Val-Thr. The same residue in Ins(1,4,5)P3 3-kinase A was also phosphorylated in vitro by CaM kinase II. Phosphorylation resulted in 8- to 10-fold enzyme activation and a 25-fold increase in sensitivity to the Ca2+:CaM complex. In this study, direct evidence is provided for a novel regulation mechanism for Ins(1,4,5)P3 3-kinase (isoform A) in vitro and in intact cells

    Informations

    No full text
    Vanweyenberg Claire, Ponot René, Bernard Yves. Informations. In: Communication et langages, n°50, 3ème-4ème trimestre 1981. pp. 109-113

    Informations

    No full text
    Vanweyenberg Claire, Ponot René, Bernard Yves. Informations. In: Communication et langages, n°50, 3ème-4ème trimestre 1981. pp. 109-113
    corecore