6 research outputs found
Recommended from our members
Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity
Decades of research have shown long-term effects of early caregiving adversity on stress physiology and limbic brain regions, two key biological systems that are implicated in risk for internalizing disorders. Although stress physiology and limbic brain structure undergo significant maturational change during childhood and adolescence, and reciprocally influence each other, the effects of early caregiving adversity on these developmental processes is not well understood. In the current study, we used an accelerated longitudinal design to assess the development of stress physiology, amygdala, and hippocampal volume following early institutional care. Previously Institutionalized (PI; N = 93) and comparison (COMP; N = 161) youth (ages 4-20 years old) completed 1-3 waves of data collection, each spaced approximately 2 years apart, for diurnal cortisol (N = 239, providing a total of 380 diurnal datasets), structural MRI (N = 156, providing a total of 306 scans) and parent-reported internalizing symptoms (N = 133, providing a total of 227 time points). We observed a developmental shift in morning cortisol in the PI group, with blunted levels in childhood and heightened levels in late adolescence. PI history was associated with reduced hippocampal volume and reduced growth of the amygdala, resulting in smaller volumes by adolescence. Results also suggested feed-forward brain-to-hormone mechanisms, such that both amygdala and hippocampal volumes were prospectively associated with morning cortisol levels two years later. Finally, amygdala and hippocampal volumes were independently associated with internalizing scores across the entire sample. These results indicate that adversity-related physiological and neural phenotypes are not stationary during development but instead exhibit dynamic and interdependent changes from early childhood to early adulthood
Recommended from our members
Dysfunctional Social Reinforcement Processing in Disruptive Behavior Disorders: An Functional Magnetic Resonance Imaging Study.
ObjectivePrior functional magnetic resonance imaging (fMRI) work has revealed that children/adolescents with disruptive behavior disorders (DBDs) show dysfunctional reward/non-reward processing of non-social reinforcements in the context of instrumental learning tasks. Neural responsiveness to social reinforcements during instrumental learning, despite the importance of this for socialization, has not yet been previously investigated.MethodsTwenty-nine healthy children/adolescents and 19 children/adolescents with DBDs performed the fMRI social/non-social reinforcement learning task. Participants responded to random fractal image stimuli and received social and non-social rewards/non-rewards according to their accuracy.ResultsChildren/adolescents with DBDs showed significantly reduced responses within the caudate and posterior cingulate cortex (PCC) to non-social (financial) rewards and social non-rewards (the distress of others). Connectivity analyses revealed that children/adolescents with DBDs have decreased positive functional connectivity between the ventral striatum (VST) and the ventromedial prefrontal cortex (vmPFC) seeds and the lateral frontal cortex in response to reward relative to non-reward, irrespective of its sociality. In addition, they showed decreased positive connectivity between the vmPFC seed and the amygdala in response to non-reward relative to reward.ConclusionThese data indicate compromised reinforcement processing of both non-social rewards and social non-rewards in children/adolescents with DBDs within core regions for instrumental learning and reinforcement-based decision- making (caudate and PCC). In addition, children/adolescents with DBDs show dysfunctional interactions between the VST, vmPFC, and lateral frontal cortex in response to rewarded instrumental actions potentially reflecting disruptions in attention to rewarded stimuli
Neurodevelopmental Changes in Social Reinforcement Processing: A Functional Magnetic Resonance Imaging Study.
ObjectiveIn the current study we investigated neurodevelopmental changes in response to social and non-social reinforcement.MethodsFifty-three healthy participants including 16 early adolescents (age, 10-15 years), 16 late adolescents (age, 15-18 years), and 21 young adults (age, 21-25 years) completed a social/non-social reward learning task while undergoing functional magnetic resonance imaging. Participants responded to fractal image stimuli and received social or non-social reward/non-rewards according to their accuracy. ANOVAs were conducted on both the blood oxygen level dependent response data and the product of a context-dependent psychophysiological interaction (gPPI) analysis involving ventromedial prefrontal cortex (vmPFC) and bilateral insula cortices as seed regions.ResultsEarly adolescents showed significantly increased activation in the amygdala and anterior insula cortex in response to non-social monetary rewards relative to both social reward/non-reward and monetary non-rewards compared to late adolescents and young adults. In addition, early adolescents showed significantly more positive connectivity between the vmPFC/bilateral insula cortices seeds and other regions implicated in reinforcement processing (the amygdala, posterior cingulate cortex, insula cortex, and lentiform nucleus) in response to non-reward and especially social non-reward, compared to late adolescents and young adults.ConclusionIt appears that early adolescence may be marked by: (i) a selective increase in responsiveness to non-social, relative to social, rewards; and (ii) enhanced, integrated functioning of reinforcement circuitry for non-reward, and in particular, with respect to posterior cingulate and insula cortices, for social non-reward
Recommended from our members
Dysfunctional Social Reinforcement Processing in Disruptive Behavior Disorders: An Functional Magnetic Resonance Imaging Study.
ObjectivePrior functional magnetic resonance imaging (fMRI) work has revealed that children/adolescents with disruptive behavior disorders (DBDs) show dysfunctional reward/non-reward processing of non-social reinforcements in the context of instrumental learning tasks. Neural responsiveness to social reinforcements during instrumental learning, despite the importance of this for socialization, has not yet been previously investigated.MethodsTwenty-nine healthy children/adolescents and 19 children/adolescents with DBDs performed the fMRI social/non-social reinforcement learning task. Participants responded to random fractal image stimuli and received social and non-social rewards/non-rewards according to their accuracy.ResultsChildren/adolescents with DBDs showed significantly reduced responses within the caudate and posterior cingulate cortex (PCC) to non-social (financial) rewards and social non-rewards (the distress of others). Connectivity analyses revealed that children/adolescents with DBDs have decreased positive functional connectivity between the ventral striatum (VST) and the ventromedial prefrontal cortex (vmPFC) seeds and the lateral frontal cortex in response to reward relative to non-reward, irrespective of its sociality. In addition, they showed decreased positive connectivity between the vmPFC seed and the amygdala in response to non-reward relative to reward.ConclusionThese data indicate compromised reinforcement processing of both non-social rewards and social non-rewards in children/adolescents with DBDs within core regions for instrumental learning and reinforcement-based decision- making (caudate and PCC). In addition, children/adolescents with DBDs show dysfunctional interactions between the VST, vmPFC, and lateral frontal cortex in response to rewarded instrumental actions potentially reflecting disruptions in attention to rewarded stimuli