12 research outputs found

    Helicobacter pylori

    No full text

    Helicobacter pylori VacA Toxin Inhibits Human Immunodeficiency Virus Infection of Primary Human T Cells

    No full text
    Human CD4(+) T cells are major targets for human immunodeficiency virus (HIV) infection. Resting T cells are resistant to HIV infection unless activated through the T-cell receptor (TCR) or by cytokine signals. How T-cell signaling promotes susceptibility of T cells to HIV infection remains poorly understood. Here we demonstrate that the VacA toxin produced by Helicobacter pylori can inhibit HIV infection of primary T cells, stimulated through the TCR or by cytokines alone. This activity of VacA was dependent on its ability to form membrane channels. VacA suppressed HIV infection of T cells at a stage after viral entry, post-reverse transcription and pre-two-long-terminal-repeat circle formation, similar to the cytokine signaling inhibitor rapamycin. Mechanistically, neither VacA nor rapamycin inhibited the activation of cytokine signal transduction components (STAT5, p42/44 mitogen-activated protein kinase, or p38), but both blocked activation of key regulatory proteins required for G(1) cell cycle transition. In contrast to rapamycin, VacA did not suppress phosphorylation of p70 S6 kinase but caused mitochondrial depolarization and ATP depletion within primary T cells. These results suggest that VacA inhibits T-cell activation and HIV infection via a novel mechanism. Identifying the host cell targets of VacA could be useful for elucidating the HIV life cycle within primary T cells

    Transcription factor GATA-1 potently represses the expression of the HIV-1 coreceptor CCR5 in human T cells and dendritic cells

    No full text
    CC chemokine receptor 5 (CCR5) is the major HIV-1 coreceptor and its expression levels are a critical determinant of HIV-1 infection. However, the molecular mechanisms of CCR5 regulation in primary targets of HIV-1 remain unknown. Despite binding to conserved DNA elements, we show that the transcription factors GATA binding protein 1 (GATA-1) and GATA-3 differentially suppress the expression of CCR5 in stem-cell–derived dendritic cells and primary human T-cell subsets. In addition, GATA-1 expression was also more potent than GATA-3 in suppressing T helper 1 (Th1)–associated genes, interferon-γ (IFNγ), and CXC chemokine receptor-3 (CXCR3). GATA-1, but not GATA-3, potently suppressed CCR5 transcription, thereby rendering human T cells resistant to CCR5-tropic HIV-1 infection. However, GATA-1 could also serve as a surrogate for GATA-3 in its canonic role of programming Th2 gene expression. These findings provide insight into GATA-3–mediated gene regulation during T-cell differentiation. Importantly, decoding the mechanisms of GATA-1–mediated repression of CCR5 may offer an opportunity to develop novel approaches to inhibit CCR5 expression in T cells

    Antimicrobial Peptides from Amphibian Skin Potently Inhibit Human Immunodeficiency Virus Infection and Transfer of Virus from Dendritic Cells to T Cells

    No full text
    Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs

    Caspase-independent cell death in T lymphocytes

    No full text
    T lymphocyte death is essential for proper function of the immune system. During the decline of an immune response, most of the activated T cells die. Cell death is also responsible for eliminating autoreactive lymphocytes. Although recent studies have focused on caspase-dependent apoptotic signals, much evidence now shows that caspase- independent, necrotic cell death pathways are as important. An understanding of the molecular control of these alternative pathways is beginning to emerge. Damage of organelles including mitochondria, endoplasmic reticulum or lysozymes, leading to an increase in calcium and reactive oxygen species and the release of effector proteins, is frequently involved in caspase-independent cell death
    corecore