65 research outputs found

    The Evolving Landscape of Flowcytometric Minimal Residual Disease Monitoring in B-Cell Precursor Acute Lymphoblastic Leukemia

    Get PDF
    Detection of minimal residual disease (MRD) is a major independent prognostic marker in the clinical management of pediatric and adult B-cell precursor Acute Lymphoblastic Leukemia (BCP-ALL), and risk stratification nowadays heavily relies on MRD diagnostics. MRD can be detected using flow cytometry based on aberrant expression of markers (antigens) during malignant B-cell maturation. Recent advances highlight the significance of novel markers (e.g., CD58, CD81, CD304, CD73, CD66c, and CD123), improving MRD identification. Second and next-generation flow cytometry, such as the EuroFlow consortium’s eight-color protocol, can achieve sensitivities down to 10−5 (comparable with the PCR-based method) if sufficient cells are acquired. The introduction of targeted therapies (especially those targeting CD19, such as blinatumomab or CAR-T19) introduces several challenges for flow cytometric MRD analysis, such as the occurrence of CD19-negative relapses. Therefore, innovative flow cytometry panels, including alternative B-cell markers (e.g., CD22 and CD24), have been designed. (Semi-)automated MRD assessment, employing machine learning algorithms and clustering tools, shows promise but does not yet allow robust and sensitive automated analysis of MRD. Future directions involve integrating artificial intelligence, further automation, and exploring multicolor spectral flow cytometry to standardize MRD assessment and enhance diagnostic and prognostic robustness of MRD diagnostics in BCP-ALL.</p

    The Evolving Landscape of Flowcytometric Minimal Residual Disease Monitoring in B-Cell Precursor Acute Lymphoblastic Leukemia

    Get PDF
    Detection of minimal residual disease (MRD) is a major independent prognostic marker in the clinical management of pediatric and adult B-cell precursor Acute Lymphoblastic Leukemia (BCP-ALL), and risk stratification nowadays heavily relies on MRD diagnostics. MRD can be detected using flow cytometry based on aberrant expression of markers (antigens) during malignant B-cell maturation. Recent advances highlight the significance of novel markers (e.g., CD58, CD81, CD304, CD73, CD66c, and CD123), improving MRD identification. Second and next-generation flow cytometry, such as the EuroFlow consortium’s eight-color protocol, can achieve sensitivities down to 10−5 (comparable with the PCR-based method) if sufficient cells are acquired. The introduction of targeted therapies (especially those targeting CD19, such as blinatumomab or CAR-T19) introduces several challenges for flow cytometric MRD analysis, such as the occurrence of CD19-negative relapses. Therefore, innovative flow cytometry panels, including alternative B-cell markers (e.g., CD22 and CD24), have been designed. (Semi-)automated MRD assessment, employing machine learning algorithms and clustering tools, shows promise but does not yet allow robust and sensitive automated analysis of MRD. Future directions involve integrating artificial intelligence, further automation, and exploring multicolor spectral flow cytometry to standardize MRD assessment and enhance diagnostic and prognostic robustness of MRD diagnostics in BCP-ALL.</p

    Molecular Monitoring of Lymphoma

    Get PDF
    This chapter provides the background information of the PCR targets for molecular MRD monitoring (i.e., Ig/TCR gene rearrangements and chromosome aberrations), explains how these targets can be identified. [...

    Molecular Monitoring of Lymphoma

    Get PDF
    This chapter provides the background information of the PCR targets for molecular MRD monitoring (i.e., Ig/TCR gene rearrangements and chromosome aberrations), explains how these targets can be identified. [...

    Benefits and risks of clofarabine in adult acute lymphoblastic leukemia investigated in depth by multi-state modeling

    Get PDF
    Background: We recently reported results of the prospective, open-label HOVON-100 trial in 334 adult patients with acute lymphoblastic leukemia (ALL) randomized to first-line treatment with or without clofarabine (CLO). No improvement of event-free survival (EFS) was observed, while a higher proportion of patients receiving CLO obtained minimal residual disease (MRD) negativity. Aim: In order to investigate the effects of CLO in more depth, two multi-state models were developed to identify why CLO did not show a long-term survival benefit despite more MRD-negativity. Methods: The first model evaluated the effect of CLO on going off-protocol (not due to refractory disease/relapse, completion or death) as a proxy of severe treatment-related toxicity, while the second model evaluated the effect of CLO on obtaining MRD negativity. The subsequent impact of these intermediate events on death or relapsed/refractory disease was assessed in both models. Results: Overall, patients receiving CLO went off-protocol more frequently than control patients (35/168 [21%] vs. 18/166 [11%], p = 0.019; HR 2.00 [1.13–3.52], p = 0.02), especially during maintenance (13/44 [30%] vs. 6/56 [11%]; HR 2.85 [95%CI 1.08–7.50], p = 0.035). Going off-protocol was, however, not associated with more relapse or death. Patients in the CLO arm showed a trend towards an increased rate of MRD-negativity compared with control patients (HR MRD-negativity: 1.35 [0.95–1.91], p = 0.10), which did not translate into a significant survival benefit. Conclusion: We conclude that the intermediate states, i.e., going off-protocol and MRD-negativity, were affected by adding CLO, but these transitions were not associated with subsequent survival estimates, suggesting relatively modest antileukemic activity in ALL.</p

    Association of Altered Plasma Lipidome with Disease Severity in COVID-19 Patients

    Get PDF
    The severity of COVID-19 is linked to an imbalanced immune response. The dysregulated metabolism of small molecules and bioactive lipids has also been associated with disease severity. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (&gt;30 immune markers). This is the third publication in a series, and it reports the results of comprehensive lipidome profiling using targeted LC-MS/MS. We identified 1076 lipid features across 25 subclasses, including glycerophospholipids, sterols, glycerolipids, and sphingolipids, among which 531 lipid features were dramatically changed in the plasma of intensive care unit (ICU) patients compared to patients in the ward. Patients in the ICU showed 1.3–57-fold increases in ceramides, (lyso-)glycerophospholipids, diglycerides, triglycerides, and plasmagen phosphoethanolamines, and 1.3–2-fold lower levels of a cyclic lysophosphatidic acid, sphingosine-1-phosphates, sphingomyelins, arachidonic acid-containing phospholipids, lactosylceramide, and cholesterol esters compared to patients in the ward. Specifically, phosphatidylinositols (PIs) showed strong fatty acid saturation-dependent behavior, with saturated fatty acid (SFA)- and monosaturated fatty acid (MUFA)-derived PI decreasing and polystaturated (PUFA)-derived PI increasing. We also found ~4000 significant Spearman correlations between lipids and multiple clinical markers of immune response with |R| ≥ 0.35 and FDR corrected Q &lt; 0.05. Except for lysophosphatidic acid, lysophospholipids were positively associated with the CD4 fraction of T cells, and the cytokines IL-8 and IL-18. In contrast, sphingosine-1-phosphates were negatively correlated with innate immune markers such as CRP and IL-6. Further indications of metabolic changes in moderate COVID-19 disease were demonstrated in recovering ward patients compared to those at the start of hospitalization, where 99 lipid species were altered (6 increased by 30–62%; 93 decreased by 1.3–2.8-fold). Overall, these findings support and expand on early reports that dysregulated lipid metabolism is involved in COVID-19.</p
    corecore