15,118 research outputs found
Screen captures to support switching attention
The study set out to validate the supportive role of screen captures for switching attention. Forty-two participants learned how to work with Microsoft Excel with a paper manual. There were three types of manuals: a textual manual, a visual manual with full-screen captures, and a visual manual with a mixture of partial- and full-screen captures. The findings show that participants in all conditions looked up from the manual to the screen on about 97% of the cases in which such a switch was called for rank order analyses showed that users of the visual manuals switched attention significantly more often than did users of the textual manual. No differences were found between conditions on learning effects and training time
Monitoring data in R with the lumberjack package
Monitoring data while it is processed and transformed can yield detailed
insight into the dynamics of a (running) production system. The lumberjack
package is a lightweight package allowing users to follow how an R object is
transformed as it is manipulated by R code. The package abstracts all logging
code from the user, who only needs to specify which objects are logged and what
information should be logged. A few default loggers are included with the
package but the package is extensible through user-defined logger objects.Comment: Accepted for publication in the Journal of Statistical Softwar
Multiple tests of association with biological annotation metadata
We propose a general and formal statistical framework for multiple tests of
association between known fixed features of a genome and unknown parameters of
the distribution of variable features of this genome in a population of
interest. The known gene-annotation profiles, corresponding to the fixed
features of the genome, may concern Gene Ontology (GO) annotation, pathway
membership, regulation by particular transcription factors, nucleotide
sequences, or protein sequences. The unknown gene-parameter profiles,
corresponding to the variable features of the genome, may be, for example,
regression coefficients relating possibly censored biological and clinical
outcomes to genome-wide transcript levels, DNA copy numbers, and other
covariates. A generic question of great interest in current genomic research
regards the detection of associations between biological annotation metadata
and genome-wide expression measures. This biological question may be translated
as the test of multiple hypotheses concerning association measures between
gene-annotation profiles and gene-parameter profiles. A general and rigorous
formulation of the statistical inference question allows us to apply the
multiple hypothesis testing methodology developed in [Multiple Testing
Procedures with Applications to Genomics (2008) Springer, New York] and related
articles, to control a broad class of Type I error rates, defined as
generalized tail probabilities and expected values for arbitrary functions of
the numbers of Type I errors and rejected hypotheses. The resampling-based
single-step and stepwise multiple testing procedures of [Multiple Testing
Procedures with Applications to Genomics (2008) Springer, New York] take into
account the joint distribution of the test statistics and provide Type I error
control in testing problems involving general data generating distributions
(with arbitrary dependence structures among variables), null hypotheses, and
test statistics.Comment: Published in at http://dx.doi.org/10.1214/193940307000000446 the IMS
Collections (http://www.imstat.org/publications/imscollections.htm) by the
Institute of Mathematical Statistics (http://www.imstat.org
- …