179 research outputs found

    Cholangiocyte organoids to study drug-induced injury

    Get PDF
    Background: Drug induced bile duct injury is a frequently observed clinical problem leading to a wide range of pathological features. During the past decades, several agents have been identified with various postulated mechanisms of bile duct damage, however, mostly still poorly understood. Methods: Here, we investigated the mechanisms of chlorpromazine (CPZ) induced bile duct injury using advanced in vitro cholangiocyte cultures. Intrahepatic cholangiocyte organoids (ICOs) were driven into mature cholangiocyte like cells (CLCs), which were exposed to CPZ under cholestatic or non-cholestatic conditions through the addition of a bile acid cocktail. Results: CPZ caused loss of monolayer integrity by reducing expression levels of tight junction protein 1 (TJP1), E-cadherin 1 (CDH1) and lysyl oxidase homolog 2 (LOXL2). Loss of zonula occuludens-1 (ZO-1) and E-cadherin was confirmed by immunostaining after exposure to CPZ and rhodamine-123 leakage further confirmed disruption of the cholangiocyte barrier function. Furthermore, oxidative stress seemed to play a major role in the early damage response by CPZ. The drug also decreased expression of three main basolateral bile acid transporters, ABCC3 (ATP binding cassette subfamily C member 3), SLC51A/B (solute carrier family 51 subunit alpha/beta) and multidrug resistance transporter ABCB1 (ATP binding cassette subfamily B member 1), thereby contributing to bile acid accumulation. CPZ did not induce an inflammatory response by itself, but addition of TNFα revealed a synergistic effect. Conclusion: These results show that ICOs present a model to identify toxic drugs affecting the bile ducts while providing mechanistic insights into hepatotoxicity

    Cell-free microRNAs as early predictors of graft viability during ex vivo normothermic machine perfusion of human donor livers

    Get PDF
    Background Cell-free microRNAs (miRs) have emerged as early and sensitive biomarkers for tissue injury and function. This study aimed to investigate whether the release of hepatocyte-derived microRNAs (HDmiRs) and cholangiocyte-derived miRs (CDmiRs) correlates with hepato-cholangiocellular injury and function during oxygenated, normothermic machine perfusion (NMP) of human liver grafts. Methods Donor livers (n = 12), declined for transplantation, were subjected to oxygenated NMP (6 hours) after a period of static cold storage (median 544 minutes (IQR 421-674)). Perfusate and bile samples were analyzed by qRT-PCR for HDmiR-122 and CDmiR-222. Spearman correlations were performed between miR levels and currently available indicators and classic markers. Results Both HDmiR-122 and CDmiR-222 levels in perfusate at 30 minutes of NMP strongly correlated with hepatocyte injury (peak perfusate AST) and cholangiocyte injury (peak biliary LDH). In bile, only CDmiR-222 correlated with these injury markers. For hepato-cholangiocellular function, both miRs in perfusate correlated with total bilirubin, while HDmiR-122 (in perfusate) and CDmiR-222 (in bile) correlated with bicarbonate secretion. Both the relative ratio of HDmiR-122/CDmiR-222 and AST in perfusate at 30 minutes significantly correlated with cumulative bile production, but only the relative ratio was predictive of histopathological injury after 6 hours NMP. Conclusion Early levels of HDmiR-122 and CDmiR-222, in perfusate and/or bile, are predictive of excretory functions and hepato-cholangiocellular injury after 6 hours NMP. These miRs may represent new biomarkers for graft viability and function during machine perfusion

    Gelatin-Based Hybrid Hydrogels as Matrices for Organoid Culture

    Get PDF
    The application of liver organoids is very promising in the field of liver tissue engineering; however, it is still facing some limitations. One of the current major limitations is the matrix in which they are cultured. The mainly undefined and murine-originated tumor matrices derived from Engelbreth-Holm-Swarm (EHS) sarcoma, such as Matrigel, are still the standard culturing matrices for expansion and differentiation of organoids toward hepatocyte-like cells, which will obstruct its future clinical application potential. In this study, we exploited the use of newly developed highly defined hydrogels as potential matrices for the culture of liver organoids and compared them to Matrigel and two hydrogels that were already researched in the field of organoid research [i.e., polyisocyanopeptides, enriched with laminin-entactin complex (PIC-LEC) and gelatin methacryloyl (GelMA)]. The newly developed hydrogels are materials that have a physicochemical resemblance with native liver tissue. Norbornene-modified dextran cross-linked with thiolated gelatin (DexNB-GelSH) has a swelling ratio and macro- and microscale properties that highly mimic liver tissue. Norbornene-modified chondroitin sulfate cross-linked with thiolated gelatin (CSNB-GelSH) contains chondroitin sulfate, which is a glycosaminoglycan (GAG) that is present in the liver ECM. Furthermore, CSNB-GelSH hydrogels with different mechanical properties were evaluated. Bipotent intrahepatic cholangiocyte organoids (ICOs) were applied in this work and encapsulated in these materials. This research revealed that the newly developed materials outperformed Matrigel, PIC-LEC, and GelMA in the differentiation of ICOs toward hepatocyte-like cells. Furthermore, some trends indicate that an interplay of both the chemical composition and the mechanical properties has an influence on the relative expression of certain hepatocyte markers. Both DexNB-GelSH and CSNB-GelSH showed promising results for the expansion and differentiation of intrahepatic cholangiocyte organoids. The stiffest CSNB-GelSH hydrogel even significantly outperformed Matrigel based on ALB, BSEP, and CYP3A4 gene expression, being three important hepatocyte markers

    Cell-free microRNAs as early predictors of graft viability during ex vivo normothermic machine perfusion of human donor livers

    Get PDF
    Background: Cell-free microRNAs (miRs) have emerged as early and sensitive biomarkers for tissue injury and function. This study aimed to investigate whether the release of hepatocyte-derived microRNAs (HDmiRs) and cholangiocyte-derived miRs (CDmiRs) correlates with hepato-cholangiocellular injury and function during oxygenated, normothermic machine perfusion (NMP) of human liver grafts. Methods: Donor livers (n = 12), declined for transplantation, were subjected to oxygenated NMP (6 hours) after a period of static cold storage (median 544 minutes (IQR 421-674)). Perfusate and bile samples were analyzed by qRT-PCR for HDmiR-122 and CDmiR-222. Spearman correlations were performed between miR levels and currently available indicators and classic markers. Results: Both HDmiR-122 and CDmiR-222 levels in perfusate at 30 minutes of NMP strongly correlated with hepatocyte injury (peak perfusate AST) and cholangiocyte injury (peak biliary LDH). In bile, only CDmiR-222 correlated with these injury markers. For hepato-cholangiocellular function, both miRs in perfusate correlated with total bilirubin, while HDmiR-122 (in perfusate) and CDmiR-222 (in bile) correlated with bicarbonate secretion. Both the relative ratio of HDmiR-122/CDmiR-222 and AST in perfusate at 30 minutes significantly correlated with cumulative bile production, but only the relative ratio was predictive of histopathological injury after 6 hours NMP. Conclusion: Early levels of HDmiR-122 and CDmiR-222, in perfusate and/or bile, are predictive of excretory functions and hepato-cholangiocellular injury after 6 hours NMP. These miRs may represent new biomarkers for graft viability and function during machine perfusion

    Identification and Validation Model for Informative Liquid Biopsy-Based microRNA Biomarkers:Insights from Germ Cell Tumor In Vitro, In Vivo and Patient-Derived Data

    Get PDF
    Liquid biopsy-based biomarkers, such as microRNAs, represent valuable tools for patient management, but often do not make it to integration in the clinic. We aim to explore issues impeding this transition, in the setting of germ cell tumors, for which novel biomarkers are needed. We describe a model for identifying and validating clinically relevant microRNAs for germ cell tumor patients, using both in vitro, in vivo (mouse model) and patient-derived data. Initial wide screening of candidate microRNAs is performed, followed by targeted profiling of potentially relevant biomarkers. We demonstrate the relevance of appropriate (negative) controls, experimental conditions (proliferation), and issues related to sample origin (serum, plasma, cerebral spinal fluid) and pre-analytical variables (hemolysis, contaminants, temperature), all of which could interfere with liquid biopsy-based studies and their conclusions. Finally, we show the value of our identification model in a specific scenario, contradicting the presumed role of miR-375 as marker of teratoma histology in liquid biopsy setting. Our findings indicate other putative microRNAs (miR-885-5p, miR-448 and miR-197-3p) fulfilling this clinical need. The identification model is informative to identify the best candidate microRNAs to pursue in a clinical setting

    The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism

    Get PDF
    Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process

    A Proof of Concept Study on Real-Pime LiMAx CYP1A2 Liver Function Assessment of Donor Grafts During Normothermic Machine Perfusion

    Get PDF
    No single reliable parameter exists to assess liver graft function of extended criteria donors during ex-vivo normothermic machine perfusion (NMP). The liver maximum capacity (LiMAx) test is a clinically validated cytochromal breath test, measuring liver function based on 13CO2 production. As an innovative concept, we aimed to integrate the LiMAx breath test with NMP to assess organ function. Eleven human livers were perfused using NMP. After one hour of stabilization, LiMAx testing was performed. Injury markers (ALT, AST, miR-122, FMN, and Suzuki-score) and lactate clearance were measured and related to LiMAx values. LiMAx values ranged between 111 and 1838 µg/kg/h, and performing consecutive LiMAx tests during longer NMP was feasible. No correlation was found between LiMAx value and miR-122 and FMN levels in the perfusate. However, a significant inverse correlation was found between LiMAx value and histological injury (Suzuki-score, R = − 0.874, P < 0.001), AST (R = − 0.812, P = 0.004) and ALT (R = − 0.687, P = 0.028). Furthermore, a significant correlation was found with lactate clearance (R = 0.683, P = 0.043). We demonstrate, as proof of principle, that liver function during NMP can be quantified using the LiMAx test, illustrating a positive correlation with traditional injury markers. This new breath-test application separates livers with adequate cytochromal liver function from inadequate ones and may support decision-making in the safe utilization of extended criteria donor grafts

    Characterization of Antigen-Presenting Cell Subsets in Human Liver-Draining Lymph Nodes

    Get PDF
    T-cell immunity in the liver is tightly regulated to prevent chronic liver inflammation in response to antigens and toxins derived from food and intestinal bacterial flora. Since the main sites of T cell activation in response to foreign components entering solid tissues are the draining lymph nodes (LN), we aimed to study whether Antigen-Presenting Cell (APC) subsets in human liver lymph-draining LN show features that may contribute to the immunologically tolerant liver environment. Healthy liver LN, iliac LN, spleen and liver perfusates were obtained from multi-organ donors, while diseased liver LN were collected from explanted patient livers. Inguinal LN were obtained from kidney transplant recipients. Mononuclear cells were isolated from fresh tissues, and immunophenotypic and functional characteristics of APC subsets were studied using flowcytometry and in ex vivo cultures. Healthy liver-draining LN contained significantly lower relative numbers of CD1c+ conventional dendritic cells (cDC2), plasmacytoid DC (PDC), and CD14+CD163+DC-SIGN+ macrophages (MF) compared to inguinal LN. Compared to spleen, both types of LN contained low relative numbers of CD141hi cDC1. Both cDC subsets in liver LN showed a more activated/mature immunophenotype than those in inguinal LN, iliacal LN, spleen and liver tissue. Despite their more mature status, cDC2 isolated from hepatic LN displayed similar cytokine production capacity (IL-10, IL-12, and IL-6) and allogeneic T cell stimulatory capacity as their counterparts from spleen. Liver LN from patients with inflammatory liver diseases showed a further reduction of cDC1, but had increased relative numbers of PDC and MF. In steady state conditions human liver LN contain relatively low numbers of cDC2, PDC, and macrophages, and relative numbers of cDC1 in liver LN decline during liver inflammation. The paucity of cDC in liver LN may contribute to immune tolerance in the liver environment

    Human Bile Contains Cholangiocyte Organoid-Initiating Cells Which Expand as Functional Cholangiocytes in Non-canonical Wnt Stimulating Conditions

    Get PDF
    Diseases of the bile duct (cholangiopathies) remain a common indication for liver transplantation, while little progress has been made over the last decade in understanding the underlying pathophysiology. This is largely due to lack of proper in vitro model systems to study cholangiopathies. Recently, a culture method has been developed that allows for expansion of human bile duct epithelial cells grown as extrahepatic cholangiocyte organoids (ncECOs) in non-canonical Wnt-stimulating conditions. These ncECOs closely resemble cholangiocytes in culture and have shown to efficiently repopulate collagen scaffolds that could act as functional biliary tissue in mice. Thus far, initiation of ncECOs required tissue samples, thereby limiting broad patient-specific applications. Here, we report that bile fluid, which can be less invasively obtained and with low risk for the patients, is an alternative source for culturing ncECOs. Further characterization showed that bile-derived cholangiocyte organoids (ncBCOs) are highly similar to ncECOs obtained from bile duct tissue biopsies. Compared to the previously reported bile-cholangiocyte organoids cultured in canonical Wnt-stimulation conditions, ncBCOs have superior function of cholangiocyte ion channels and are able to respond to secretin and somatostatin. In conclusion, bile is a new, less invasive, source for patient-derived cholangiocyte organoids and makes their regenerative medicine applications more safe and feasible
    • …
    corecore