401 research outputs found
Hyper-Scalable JSQ with Sparse Feedback
Load balancing algorithms play a vital role in enhancing performance in data
centers and cloud networks. Due to the massive size of these systems,
scalability challenges, and especially the communication overhead associated
with load balancing mechanisms, have emerged as major concerns. Motivated by
these issues, we introduce and analyze a novel class of load balancing schemes
where the various servers provide occasional queue updates to guide the load
assignment.
We show that the proposed schemes strongly outperform JSQ() strategies
with comparable communication overhead per job, and can achieve a vanishing
waiting time in the many-server limit with just one message per job, just like
the popular JIQ scheme. The proposed schemes are particularly geared however
towards the sparse feedback regime with less than one message per job, where
they outperform corresponding sparsified JIQ versions.
We investigate fluid limits for synchronous updates as well as asynchronous
exponential update intervals. The fixed point of the fluid limit is identified
in the latter case, and used to derive the queue length distribution. We also
demonstrate that in the ultra-low feedback regime the mean stationary waiting
time tends to a constant in the synchronous case, but grows without bound in
the asynchronous case
Load Balancing in Large-Scale Systems with Multiple Dispatchers
Load balancing algorithms play a crucial role in delivering robust
application performance in data centers and cloud networks. Recently, strong
interest has emerged in Join-the-Idle-Queue (JIQ) algorithms, which rely on
tokens issued by idle servers in dispatching tasks and outperform power-of-
policies. Specifically, JIQ strategies involve minimal information exchange,
and yet achieve zero blocking and wait in the many-server limit. The latter
property prevails in a multiple-dispatcher scenario when the loads are strictly
equal among dispatchers. For various reasons it is not uncommon however for
skewed load patterns to occur. We leverage product-form representations and
fluid limits to establish that the blocking and wait then no longer vanish,
even for arbitrarily low overall load. Remarkably, it is the least-loaded
dispatcher that throttles tokens and leaves idle servers stranded, thus acting
as bottleneck.
Motivated by the above issues, we introduce two enhancements of the ordinary
JIQ scheme where tokens are either distributed non-uniformly or occasionally
exchanged among the various dispatchers. We prove that these extensions can
achieve zero blocking and wait in the many-server limit, for any subcritical
overall load and arbitrarily skewed load profiles. Extensive simulation
experiments demonstrate that the asymptotic results are highly accurate, even
for moderately sized systems
Impact of the COVID-19 pandemic and initial period of lockdown on the mental health and well-being of adults in the UK
The impact of the COVID-19 pandemic on mental health and well-being were assessed in a convenience sample of 600 UK adults, using a cross-sectional design. Recruited over 2 weeks during the initial phase of lockdown, participants completed an online survey that included COVID-19-related questions, the Hospital Anxiety and Depression Scale, the World Health Organization (Five) Well-Being Index and the Oxford Capabilities Questionnaire for Mental Health. Self-isolating before lockdown, increased feelings of isolation since lockdown and having COVID-19-related livelihood concerns were associated with poorer mental health, well-being and quality of life. Perceiving increased kindness, community connectedness and being an essential worker were associated with better mental health and well-being outcomes
Optimal Hyper-Scalable Load Balancing with a Strict Queue Limit
Load balancing plays a critical role in efficiently dispatching jobs in
parallel-server systems such as cloud networks and data centers. A fundamental
challenge in the design of load balancing algorithms is to achieve an optimal
trade-off between delay performance and implementation overhead (e.g.
communication or memory usage). This trade-off has primarily been studied so
far from the angle of the amount of overhead required to achieve asymptotically
optimal performance, particularly vanishing delay in large-scale systems. In
contrast, in the present paper, we focus on an arbitrarily sparse communication
budget, possibly well below the minimum requirement for vanishing delay,
referred to as the hyper-scalable operating region. Furthermore, jobs may only
be admitted when a specific limit on the queue position of the job can be
guaranteed.
The centerpiece of our analysis is a universal upper bound for the achievable
throughput of any dispatcher-driven algorithm for a given communication budget
and queue limit. We also propose a specific hyper-scalable scheme which can
operate at any given message rate and enforce any given queue limit, while
allowing the server states to be captured via a closed product-form network, in
which servers act as customers traversing various nodes. The product-form
distribution is leveraged to prove that the bound is tight and that the
proposed hyper-scalable scheme is throughput-optimal in a many-server regime
given the communication and queue limit constraints. Extensive simulation
experiments are conducted to illustrate the results
- …