63 research outputs found

    Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination

    Get PDF
    BACKGROUND: Abnormal DNA methylation is well established for breast cancer and contributes to its progression by silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by methylomics. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43) samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles. Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs. 38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group. Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions, Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes. CONCLUSIONS/SIGNIFICANCE: A subset of clinical samples of breast cancer was characterized by high methylation levels, which coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the main force driving the molecular biology of IBC

    Genome analysis of triploid hybrid Leishmania parasite from the Neotropics

    Get PDF
    We discovered a hybrid Leishmania parasite in Costa Rica that is genetically similar to hybrids from Panama. Genome analyses demonstrated the hybrid is triploid and identified L. braziliensis and L. guyanensis-related strains as parents. Our findings highlight the existence of poorly sampled Leishmania (Viannia) variants infectious to humans

    Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling

    Full text link
    Inflammatory breast cancer (IBC) is an aggressive form of locally advanced breast cancer with high metastatic potential. Most patients have lymph node involvement at the time of diagnosis and 1/3 of the patients have distant metastases. In a previous study, we demonstrated that IBC is a distinct form of breast cancer in comparison with non-IBC. The aim of this study was to investigate the presence of the different molecular subtypes in our data set of 16 IBC and 18 non-IBC specimen. Therefore, we selected an ‘intrinsic gene set’ of 144 genes, present on our cDNA chips and common to the ‘intrinsic gene set’ described by Sorlie et al. [PNAS, 2003]. This set of genes was tested for performance in the Norway/Stanford data set by unsupervised hierarchical clustering. Expression centroids were then calculated for the core members of each of the five subclasses in the Norway/Stanford data set and used to classify our own specimens by calculating Spearman correlations between each sample and each centroid. We identified the same cell-of-origin subtypes in IBC as those already described in non-IBC. The classification was in good agreement with immunohistochemical data for estrogen receptor protein expression and cytokeratin 5/6 protein expression. Confirmation was done by an alternative unsupervised hierarchical clustering method. The robustness of this classification was assessed by an unsupervised hierarchical clustering with an alternative gene set of 141 genes related to the cell-of-origin subtypes, selected using a discriminating score and iterative random permutation testing. The contribution of the different cell-of-origin subtypes to the IBC phenotype was investigated by principal component analysis. Generally, the combined ErbB2-overexpressing and basal-like cluster was more expressed in IBC compared to non-IBC, whereas the combined luminal A, luminal B and normal-like cluster was more pronounced in non-IBC compared to IBC. The presence of the same molecular cell-of-origin subtypes in IBC as in non-IBC does not exclude the specific molecular nature of IBC, since gene lists that characterize IBC and non-IBC are entirely different from gene lists that define the different cell-of-origin subtypes, as evidenced by principal component analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44236/1/10549_2005_Article_9015.pd

    Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates

    Get PDF
    Leishmania is a group of parasites (Protozoa, Trypanosomatidae) responsible for a wide spectrum of clinical forms. Among the factors explaining this phenotypic polymorphism, parasite features are important contributors. One approach to identify them consists in characterizing the gene expression profiles throughout the life cycle. In a recent study, the transcriptome of 3 Leishmania species was compared and this revealed species-specific differences, albeit in a low number. A key issue, however, is to ensure that the observed differences are indeed species-specific and not specific of the strains selected for representing the species. In order to illustrate the relevance of this concern, we analyzed here the gene expression profiles of 5 clinical isolates of L. braziliensis at seven time points of the life cycle. Our results clearly illustrate the unique character of each isolate in terms of gene expression dynamics: one Leishmania strain is not necessarily representative of a given species

    Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer

    Full text link
    Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer (LABC). The IBC phenotype is characterized by an infiltrative growth pattern, increased (lymph)angiogenesis and the propensity to invade dermal lymphatics. In pancreatic cancer, interactions between caveolin-1 and RhoC GTPase, a key molecule in causing the IBC phenotype, regulate tumour cell motility and invasion. In this study we sought to investigate the role of caveolin-1 and -2 in IBC cell lines and in human IBC samples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44235/1/10549_2005_Article_9002.pd
    corecore