4 research outputs found
Kuwaitiella rubra gen. et sp. nov. (Bangiales, Rhodophyta), a new filamentous genus and species from the north-western Indian Ocean
ACKNOWLEDGMENTS Many thanks to Bivin Thomas, Pupa Kumai and Hedda Weitz for helping in the laboratory and improving this manuscript, to Ioanna Kosma for diving, to Yusuf Buhadi for assistance during field work, archiving and preparation of herbarium specimens, and to Tatiana Mikhaylova for micrographs of previously collected filamentous red algae from Kuwait. We are grateful to La′ala Kuwait Real Estate Company and especially Mr. Fawaz Al-Marzouq for providing the salinity data. The present work is part of MHH's PhD thesis ‘Macroalgal biodiversity of Kuwait, with special emphasis on the vicinity of desalination plants’ funded by a PhD fellowship from the Kuwait Foundation for the Advancement of Sciences. FCK received support from the Marine Alliance for Science and Technology for Scotland pooling initiative. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. Work of AFP was in part supported by the project IDEALG (France: ANR-10-BTBR-04). Research Funding Agence Nationale de la Recherche. Grant Number: 10-BTBR-04 Kuwait Foundation for the Advancement of Sciences Marine Alliance for Science and Technology for Scotland IDEALG. Grant Number: ANR-10-BTBR-04 Scottish Funding Council. Grant Number: HR09011 Marine Alliance for Science and Technology Kuwait Foundation for the Advancement of SciencesPeer reviewedPublisher PD
Clinical implications of a possible role of vitamin D in multiple sclerosis
Hypovitaminosis D is currently one of the most studied environmental risk factors for multiple sclerosis (MS) and is potentially the most promising in terms of new clinical implications. These practical consequences, which could be applied to MS patients without further delay, constitute the main purpose of this review. Vitamin D is involved in a number of important general actions, which were not even suspected until quite recently. In particular, this vitamin could play an immunomodulatory role in the central nervous system. Many and varied arguments support a significant role for vitamin D in MS. In animal studies, vitamin D prevents and improves experimental autoimmune encephalomyelitis. Epidemiologically, latitude, past exposure to sun and the serum level of vitamin D influence the risk of MS, with, furthermore, significant links existing between these different factors. Clinically, most MS patients have low serum levels of vitamin D and are in a state of insufficiency or even deficiency compared to the international norm, which has been established on a metabolic basis. Large therapeutic trials using vitamin D are still lacking but the first results of phase I/II studies are promising. In the meantime, while awaiting the results of future therapeutic trials, it can no longer be ignored that many MS patients have a lack of vitamin D, which could be detected by a serum titration and corrected using an appropriate vitamin D supplementation in order to restore their serum level to within the normal range. From a purely medical point of view, vitamin D supplementation appears in this light to be unavoidable in order to improve the general state of these patients. Furthermore, it cannot currently be ruled out that this supplementation could also be neurologically beneficial
Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity
<p>Abstract</p> <p>Background</p> <p>Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed.</p> <p>Results</p> <p>Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with <it>Plasmodium chabaudi chabaudi </it>and <it>Nippostrongylus brasiliensis </it>or <it>Litomosoides sigmodontis</it>. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-1<sub>19 </sub>may more closely reflect the natural non-glycosylated antigen seen during infection.</p> <p>Conclusions</p> <p>In order to utilize antibody isotypes as a measure of immune bias during co-infection studies, it is important to dissect antigen-specific from cross-reactive antibody responses. Calculating antibody titre, rather than using a single dilution of serum, as a measure of the relative strength of the response, largely accomplished this. Elimination of the carbohydrate moiety of an antigen that can often be the target of cross-reactive antibodies also proved useful.</p