23 research outputs found

    Brain structure of perinatally HIV-infected patients on long-term treatment: A systematic review

    No full text
    ObjectiveWe aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time.MethodsWe conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: Cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies.ResultsAfter screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: Structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive.ConclusionEvidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown

    Brain Differences in Adolescents Living with Perinatally Acquired HIV Compared with Adoption Status Matched Controls: A Cross-sectional Study

    No full text
    Background and ObjectivesDespite effective combination antiretroviral therapy (cART), adolescents with perinatally acquired HIV (PHIV) exhibit cognitive impairment, of which structural changes could be the underlying pathophysiologic mechanism. Prior MRI studies found lower brain volumes, higher white matter (WM) hyperintensity (WMH) volume, lower WM integrity, and differences in cerebral blood flow (CBF). However, these findings may be confounded by adoption status, as a large portion of adolescents with PHIV have been adopted. Adoption has been associated with malnutrition and neglect, which, in turn, may have affected brain development. We investigated the long-term effects of PHIV on the brain, while minimizing the confounding effect of adoption status.MethodsWe determined whole-brain gray matter (GM) and WM volume with 3D T1-weighted scans; total WMH volume with fluid-attenuated inversion recovery; CBF in the following regions of interest (ROIs): WM, GM, and subcortical GM with arterial spin labeling; and whole-brain WM microstructural markers: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) with diffusion tensor imaging in cART-treated adolescents with PHIV visiting our outpatient clinic in Amsterdam and controls matched for age, sex, ethnic origin, socioeconomic status, and adoption status. We assessed differences in neuroimaging parameters between adolescents with PHIV and controls using linear regression models adjusted for age and sex and applied multiple comparison correction.ResultsThirty-five adolescents with PHIV and 38 controls were included with a median age of 14.9 (interquartile range [IQR]: 10.7-18.5) and 15.6 (IQR: 11.1-17.6) years, respectively, with a similar rate of adoption. We found a lower overall FA (beta =-0.012; p < 0.014,-2.4%), a higher MD (beta = 0.014, p = 0.014, 1.3%), and a higher RD (beta = 0.02, p = 0.014, 3.3%) in adolescents with PHIV vs adoption-matched controls, but no differences in AD. We found comparable GM, WM, and WMH volume and CBF in ROIs between adolescents with PHIV and controls. We did not find an association between cognitive profiles and WM microstructural markers in adolescents with PHIV.DiscussionIrrespective of adoption status, adolescents with PHIV exhibited subtle lower WM integrity. Our findings may point toward early-acquired WM microstructural alterations associated with HIV

    Development of retinal structure in perinatally HIV-infected children and adolescents: A longitudinal and cross-sectional assessment

    No full text
    In perinatally HIV-infected (PHIV) children, cross-sectional studies reported on subtle structural retinal differences and found associations between the retina and structural brain changes. Our objective is to investigate whether neuroretinal development in PHIV children is similar to the development in healthy matched controls and to explore associations with the brain structure. We measured RT using optical coherence tomography (OCT) on two occasions in 21 PHIV children or adolescents and 23 matched controls–all with good visual acuity–with a mean interval of 4.6 years (SD 0.3). We also included 22 participants (11 PHIV children and 11 controls) together with the follow-up group for a cross-sectional assessment using a different OCT device. Magnetic resonance imaging (MRI) was used to assess the white matter microstructure. We used linear (mixed) models to assess changes in RT and its determinants (over time), adjusting for age and sex. The development of the retina was similar between the PHIV adolescents and controls. In our cohort, we found that changes in the peripapillary RNFL was significantly associated with changes in WM microstructural makers: fractional anisotropy (coefficient = 0.030, p = 0.022) and radial diffusivity (coefficient = -0.568, p = 0.025). We found comparable RT between groups. A thinner pRNFL was associated with lower WM volume (coefficient = 0.117, p = 0.030). PHIV children or adolescents appear to have a similar development of the retinal structure. In our cohort, the associations between RT and MRI biomarkers underscore the relation between retina and brain

    Development of retinal structure in perinatally HIV-infected children and adolescents: A longitudinal and cross-sectional assessment

    No full text
    In perinatally HIV-infected (PHIV) children, cross-sectional studies reported on subtle structural retinal differences and found associations between the retina and structural brain changes. Our objective is to investigate whether neuroretinal development in PHIV children is similar to the development in healthy matched controls and to explore associations with the brain structure. We measured RT using optical coherence tomography (OCT) on two occasions in 21 PHIV children or adolescents and 23 matched controls–all with good visual acuity–with a mean interval of 4.6 years (SD 0.3). We also included 22 participants (11 PHIV children and 11 controls) together with the follow-up group for a cross-sectional assessment using a different OCT device. Magnetic resonance imaging (MRI) was used to assess the white matter microstructure. We used linear (mixed) models to assess changes in RT and its determinants (over time), adjusting for age and sex. The development of the retina was similar between the PHIV adolescents and controls. In our cohort, we found that changes in the peripapillary RNFL was significantly associated with changes in WM microstructural makers: fractional anisotropy (coefficient = 0.030, p = 0.022) and radial diffusivity (coefficient = -0.568, p = 0.025). We found comparable RT between groups. A thinner pRNFL was associated with lower WM volume (coefficient = 0.117, p = 0.030). PHIV children or adolescents appear to have a similar development of the retinal structure. In our cohort, the associations between RT and MRI biomarkers underscore the relation between retina and brain

    Multivalent immune complexes divert FcRn to lysosomes by exclusion from recycling sorting tubules

    No full text
    The neonatal receptor for immunoglobulin G (IgG; FcRn) prevents IgG degradation by efficiently sorting IgG into recycling endosomes and away from lysosomes. When bound to IgG-opsonized antigen complexes, however, FcRn traffics cargo into lysosomes, where antigen processing can occur. Here we address the mechanism of sorting when FcRn is bound to multivalent IgG-opsonized antigens. We find that only the unbound receptor or FcRn bound to monomeric IgG is sorted into recycling tubules emerging from early endo-somes. Cross-linked FcRn is never visualized in tubules containing the unbound receptor. Similar results are found for transferrin receptor, suggesting a general mechanism of action. Deletion or replacement of the FcRn cytoplasmic tail does not prevent diversion of trafficking to lysosomes upon cross-linking. Thus physical properties of the lumenal ligand-receptor complex appear to act as key determinants for sorting between the recycling and lysosomal pathways by regulating FcRn entry into recycling tubules

    Differences in location of cerebral white matter hyperintensities in children and adults living with a treated HIV infection: A retrospective cohort comparison

    No full text
    Cerebral white matter hyperintensities (WMH) persist in children and adults living with HIV, despite effective combination antiretroviral therapy (cART). As age and principal routes of transmission differ between children (perinatally) and adults (behaviorally), comparing the characteristics and determinants of WMH between these populations may increase our understanding of the pathophysiology of WMH. From separate cohorts of 31 children (NOVICE) and 74 adults (AGEhIV), we cross-sectionally assessed total WMH volume and number of WMH per location (periventricular vs. deep) using fluid-attenuated inversion recovery (FLAIR) MRI images. WMH were either periventricular when within 10mm of the lateral ventricles, or deep otherwise. We assessed patient- or HIV-related determinants of total WMH volume (adjusted for intracranial volume) and location of WMH using logistic regression, while stratifying on children and adults. At enrollment, median age of participants was 13.8 years (IQR 11.4–15.9) for children and 53.4 years (IQR 48.3–60.8) for adults and 27/31 children (87%) and 74/74 adults (100%) had an HIV RNA viral load <200 copies/mL. WMH were present in 16/27 (52%) children and 74/74 adults (100%). The prevalence of deep WMH was not different between groups, (16/16 [100%] in children vs. 71/74 [96%] in adults, p = 0,999), yet periventricular WMH were more prevalent in adults (74/74 [100%]) compared to children (9/16; 56%) (p<0.001). Median WMH volume was higher in adults compared to children (1182 mm3 [425–2617] vs. 109 mm3 [61.7–625], p<0.001). In children, boys were more likely to have deep WMH compared to girls. In adults, older age was associated with higher total WMH volume, and age, hypertension and lower CD4+ T-lymphocyte nadir with a higher number of periventricular WMH. Our findings suggest that the location of WMH differs between children and adults living with HIV, hinting at a different underlying pathogenesis

    Differences in location of cerebral white matter hyperintensities in children and adults living with a treated HIV infection: A retrospective cohort comparison.

    No full text
    Cerebral white matter hyperintensities (WMH) persist in children and adults living with HIV, despite effective combination antiretroviral therapy (cART). As age and principal routes of transmission differ between children (perinatally) and adults (behaviorally), comparing the characteristics and determinants of WMH between these populations may increase our understanding of the pathophysiology of WMH. From separate cohorts of 31 children (NOVICE) and 74 adults (AGEhIV), we cross-sectionally assessed total WMH volume and number of WMH per location (periventricular vs. deep) using fluid-attenuated inversion recovery (FLAIR) MRI images. WMH were either periventricular when within 10mm of the lateral ventricles, or deep otherwise. We assessed patient- or HIV-related determinants of total WMH volume (adjusted for intracranial volume) and location of WMH using logistic regression, while stratifying on children and adults. At enrollment, median age of participants was 13.8 years (IQR 11.4-15.9) for children and 53.4 years (IQR 48.3-60.8) for adults and 27/31 children (87%) and 74/74 adults (100%) had an HIV RNA viral load <200 copies/mL. WMH were present in 16/27 (52%) children and 74/74 adults (100%). The prevalence of deep WMH was not different between groups, (16/16 [100%] in children vs. 71/74 [96%] in adults, p = 0,999), yet periventricular WMH were more prevalent in adults (74/74 [100%]) compared to children (9/16; 56%) (p<0.001). Median WMH volume was higher in adults compared to children (1182 mm3 [425-2617] vs. 109 mm3 [61.7-625], p<0.001). In children, boys were more likely to have deep WMH compared to girls. In adults, older age was associated with higher total WMH volume, and age, hypertension and lower CD4+ T-lymphocyte nadir with a higher number of periventricular WMH. Our findings suggest that the location of WMH differs between children and adults living with HIV, hinting at a different underlying pathogenesis

    A Longitudinal Analysis of Cerebral Blood Flow in Perinatally HIV Infected Adolescents as Compared to Matched Healthy Controls

    No full text
    Despite effective combination anti-retroviral therapy (cART), perinatally HIV infected (PHIV) adolescents still experience cognitive complications. We previously reported higher cerebral blood flow (CBF) in basal ganglia and white matter (WM) in PHIV children compared to matched controls. In healthy children CBF is associated with cognitive domains. To determine longitudinal changes in CBF and its impact on cognitive complications, we measured CBF—using arterial spin labeling—in 21 PHIV adolescents and 23 controls matched for age, sex and socio-economic status twice with a mean follow-up of 4.6 years. We explored associations between CBF changes and WM micro- and macrostructural markers and cognitive domains using linear mixed models. The median age at follow-up was comparable between PHIV adolescents 17.4y (IQR:15.3–20.7) and controls 16.2y (IQR:15.6–19.1). At baseline, PHIV had higher CBF in the caudate nucleus and putamen. CBF development was comparable in gray matter (GM), WM and subcortical regions in both groups. In our cohort, we found that over time an increase of GM CBF was associated with an increase of visual motor function (p = 0.043) and executive function (p = 0.045). Increase of CBF in the caudate nucleus, putamen and thalamus was associated with an increase processing speed (p = 0.033; 0.036; 0.003 respectively) and visual motor function (p = 0.023; 0.045; 0.003 respectively). CBF development is relatively normal in PHIV adolescents on cART. CBF decline is associated with cognitive impairment, irrespective of HIV status
    corecore