217 research outputs found

    Influenza vaccination of healthcare workers in acute-care hospitals: a case-control study of its effect on hospital-acquired influenza among patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In acute-care hospitals, no evidence of a protective effect of healthcare worker (HCW) vaccination on hospital-acquired influenza (HAI) in patients has been documented. Our study objective was to ascertain the effectiveness of influenza vaccination of HCW on HAI among patients.</p> <p>Methods</p> <p>A nested case-control investigation was implemented in a prospective surveillance study of influenza-like illness (ILI) in a tertiary acute-care university hospital. Cases were patients with virologically-confirmed influenza occurring ≥ 72 h after admission, and controls were patients with ILI presenting during hospitalisation with negative influenza results after nasal swab testing. Four controls per case, matched per influenza season (2004-05, 2005-06 and 2006-07), were randomly selected. Univariate and multivariate conditional logistic regression models were fitted to assess factors associated with HAI among patients.</p> <p>Results</p> <p>In total, among 55 patients analysed, 11 (20%) had laboratory-confirmed HAI. The median HCW vaccination rate in the units was 36%. The median proportion of vaccinated HCW in these units was 11.5% for cases vs. 36.1% for the controls (<it>P </it>= 0.11); 2 (20%) cases and 21 (48%) controls were vaccinated against influenza in the current season (<it>P </it>= 0.16). The proportion of ≥ 35% vaccinated HCW in short-stay units appeared to protect against HAI among patients (odds ratio = 0.07; 95% confidence interval 0.005-0.98), independently of patient age, influenza season and potential influenza source in the units.</p> <p>Conclusions</p> <p>Our observational study indicates a shielding effect of more than 35% of vaccinated HCW on HAI among patients in acute-care units. Investigations, such as controlled clinical trials, are needed to validate the benefits of HCW vaccination on HAI incidence in patients.</p

    Vaccine herd effect

    Get PDF
    Vaccination ideally protects susceptible populations at high risk for complications of the infection. However, vaccines for these subgroups do not always provide sufficient effectiveness. The herd effect or herd immunity is an attractive way to extend vaccine benefits beyond the directly targeted population. It refers to the indirect protection of unvaccinated persons, whereby an increase in the prevalence of immunity by the vaccine prevents circulation of infectious agents in susceptible populations. The herd effect has had a major impact in the eradication of smallpox, has reduced transmission of pertussis, and protects against influenza and pneumococcal disease. A high uptake of vaccines is generally needed for success. In this paper we aim to provide an update review on the herd effect, focusing on the clinical benefit, by reviewing data for specific vaccines

    Epidemiology of influenza-associated hospitalization in adults, Toronto, 2007/8

    Get PDF
    The purpose of this investigation was to identify when diagnostic testing and empirical antiviral therapy should be considered for adult patients requiring hospitalization during influenza seasons. During the 2007/8 influenza season, six acute care hospitals in the Greater Toronto Area participated in active surveillance for laboratory-confirmed influenza requiring hospitalization. Nasopharyngeal (NP) swabs were obtained from patients presenting with acute respiratory or cardiac illness, or with febrile illness without clear non-respiratory etiology. Predictors of influenza were analyzed by multivariable logistic regression analysis and likelihoods of influenza infection in various patient groups were calculated. Two hundred and eighty of 3,917 patients were found to have influenza. Thirty-five percent of patients with influenza presented with a triage temperature ≥38.0°C, 80% had respiratory symptoms in the emergency department, and 76% were ≥65 years old. Multivariable analysis revealed a triage temperature ≥38.0°C (odds ratio [OR] 3.1; 95% confidence interval [CI] 2.3–4.1), the presence of respiratory symptoms (OR 1.7; 95% CI 1.2–2.4), admission diagnosis of respiratory infection (OR 1.8; 95% CI 1.3–2.4), admission diagnosis of exacerbation of chronic obstructive pulmonary disease (COPD)/asthma or respiratory failure (OR 2.3; 95% CI 1.6–3.4), and admission in peak influenza weeks (OR 4.2; 95% CI 3.1–5.7) as independent predictors of influenza. The likelihood of influenza exceeded 15% in patients with respiratory infection or exacerbation of COPD/asthma if the triage temperature was ≥38.0°C or if they were admitted in the peak weeks during the influenza season. During influenza season, diagnostic testing and empiric antiviral therapy should be considered in patients requiring hospitalization if respiratory infection or exacerbation of COPD/asthma are suspected and if either the triage temperature is ≥38.0°C or admission is during the weeks of peak influenza activity

    Genetically-Based Olfactory Signatures Persist Despite Dietary Variation

    Get PDF
    Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects
    corecore