14 research outputs found

    Data from: Adaptive differences in circadian clock gene expression patterns and photoperiodic diapause induction in Nasonia vitripennis

    No full text
    Day length (photoperiod) and temperature oscillate daily and seasonally and are important cues for season-dependent behavior. Larval diapause of the parasitoid Nasonia vitripennis is maternally induced following a certain number of days (switch point) of a given critical photoperiod (CPP). Both the switch point and the CPP follow a latitudinal cline in European N. vitripennis populations. We previously showed that allelic frequencies of the clock gene period correlate with this diapause induction cline. Here we report that circadian expression of four clock genes—period (per), cryptochrome-2 (cry-2), clock (clk), and cycle (cyc)—oscillates as a function of photoperiod and latitude of origin in wasps from populations from the extremes of the cline. Expression amplitudes are lower in northern wasps, indicating a weaker, more plastic clock. Northern wasps also have a later onset of activity and longer free-running rhythms under constant conditions. RNA interference of per caused speeding up of the circadian clock, changed the expression of other clock genes, and delayed diapause in both southern and northern wasps. These results point toward adaptive latitudinal clock gene expression differences and to a key role of per in the timing of photoperiodic diapause induction of N. vitripennis. The zip-file includes code

    Data from: Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality

    No full text
    Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors

    Data from: Development of a Nasonia vitripennis outbred laboratory population for genetic analysis

    No full text
    The parasitoid wasp genus Nasonia has rapidly become a genetic model system for developmental and evolutionary biology. The release of its genome sequence led to the development of high-resolution genomic tools, for both interspecific and intraspecific research, which has resulted in great advances in understanding Nasonia biology. To further advance the utility of Nasonia vitripennis as a genetic model system and to be able to fully exploit the advantages of its fully sequenced and annotated genome, we developed a genetically variable and well-characterized experimental population. In this study, we describe the establishment of the genetically diverse HVRx laboratory population from strains collected from the field in the Netherlands. We established a maintenance method that retains genetic variation over generations of culturing in the laboratory. As a characterization of its genetic composition, we provide data on the standing genetic variation and estimate the effective population size (Ne) by microsatellite analysis. A genome-wide description of polymorphism is provided through pooled resequencing, which yielded 417 331 high-quality SNPs spanning all five Nasonia chromosomes. The HVRx population and its characterization are freely available as a community resource for investigators seeking to elucidate the genetic basis of complex trait variation using the Nasonia model system. The data package contains five sets: - Nasonia vitripennis HVRx outbred laboratory population SNP data - Chromosome 1. VarScan.v2.2.8 output according to the following rules: minimum consensus quality: 20; minimum count of minor allele: 2, minimum coverage: 8. Reads with mapping qualities less than 20 were discarded

    Data from: Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp

    No full text
    Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. Results We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7–1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. Conclusions Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts’ sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects

    Additional file 3 of Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis

    No full text
    Additional file 3: Supplementary Table 3. Results for sex ratio and clutch size GWAS in NVGRP. Worksheets show: Significantly associated SNPs for sex ratio, All GWAS results for sex ratio and All GWAS results for clutch size. Data in SupplementaryTable3_GWAS_Candidate_and_All_SNPs

    Additional file 4 of Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis

    No full text
    Additional file 4: Supplementary Table 4. Linkage disequilibrium (r2) between 18 SNPs significantly associated with sex ratio in the 25 NVGRP lines. Data in SupplementaryTable4_r2_Matrix

    Additional file 2 of Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis

    No full text
    Additional file 2: Supplementary Table 2. NVGRP and HVRx Sliding windows analysis (400 kb windows) for pi, theta and Tajima’s D. Data in SupplementaryTable2_PopoolationResults
    corecore