8 research outputs found

    Blind Polarization Demultiplexing of Shaped QAM Signals Assisted by Temporal Correlations

    No full text
    While probabilistic constellation shaping (PCS) enables rate and reach adaption with finer granularity [1] (Cho and Winzer, 2009), it imposes signal processing challenges at the receiver. Since the distribution of PCS-quadrature amplitude modulation (QAM) signals tends to be Gaussian, conventional blind polarization demultiplexing algorithms are not suitable for them [2] (Johnson et al., 1998). It is known that independently and identically distributed (iid) Gaussian signals, when mixed, cannot be recovered/separated from their mixture. For PCS-QAM signals, there are algorithms such as [3] and [4] Dris et al. (2019) and Athuraliya et al. (2004) which are designed by extending conventional blind algorithms used for uniform QAM signals. In these algorithms, an initialization point is obtained by processing only a part of the mixed signal, which have non-Gaussian statistics. In this article, we propose an alternative method wherein we add temporal correlations at the transmitter, which are subsequently exploited at the receiver in order to separate the polarizations. We will refer to the proposed method as frequency domain (FD) joint diagonalization (JD) probability aware-multi modulus algorithm (pr-MMA), and it is suited to channels with moderate polarization mode dispersion (PMD) effects. Furthermore, we extend our previously proposed JD-MMA [5] (Bajaj et al., 2022) by replacing the standard MMA with a pr-MMA, improving its performance. Both FDJD-pr-MMA and JD-pr-MMA are evaluated for a diverse range of PCS (entropy H\mathcal {H}) of 64-QAM over a first-order PMD channel that is simulated in a proof-of-concept setup. A MMA initialized with a memoryless constant modulus algorithm (CMA) is used as a benchmark. We show that at a differential group delay (DGD) of 10% of symbol period Tsymb_{\text{symb}} and 18 dB SNR/pol., JD-pr-MMA successfully demultiplexes the PCS signals, while CMA-MMA fails drastically. Furthermore, we demonstrate that the newly proposed FDJD-pr-MMA is robust against moderate PMD effects by evaluating it over a DGD of up to 40% of Tsymb_{\text{symb}}. Our results show that the proposed FDJD-pr-MMA successfully equalizes PMD channels with a DGD up to 20% of Tsymb_{\text{symb}}.Team Sander WahlsTeam Raf Van de Pla

    Blind Polarization Demultiplexing of Probabilistically Shaped Signals

    No full text
    We propose a novel method for blind polarization-demultiplexing of probabilistically shaped signals for coherent receivers. The method is capable of separating signals with (quasi) Gaussian distributions by exploiting temporal correlations added to the transmit signals. The proposed method is evaluated in challenging mixing scenarios.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Sander WahlsTeam Raf Van de Pla

    Comparison of macro x-ray fluorescence and reflectance imaging spectroscopy for the semi-quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer

    No full text
    Macroscopic x-ray fluorescence imaging spectroscopy (MA-XRF) and reflectance imaging spectroscopy (RIS) are important tools in the analysis of cultural heritage objects, both for conservation and art historical research purposes. The elemental and molecular distributions provided by MA-XRF and RIS respectively, are particularly useful for the identification and mapping of pigments in easel paintings. While MA-XRF has relatively established data processing methods based on modeling of the underlying physics, RIS data cannot be modeled with sufficient precision and its processing has considerable room for improvements. This work seeks to improve RIS data processing workflows in the short wavelength infrared range (SWIR, 1000–2500 nm) with a novel method that fits Gaussian profiles to pigment-specific absorption features, and we compare its performance to MA-XRF for the task of semi-quantitative pigment mapping, evaluating their limits of detection (LODs) and the matrix effects that affect their signals. Two pigments are considered in this work, lead white and blue verditer, which are mapped in SWIR RIS using the first overtone of -OH stretching of their primary compounds, hydrocerussite (Pb3(CO3)2(OH)2) and azurite (Cu3(CO3)2(OH)2), at 1447 and 1497 nm respectively, and in MA-XRF using the Pb-L and Cu-K fluorescence signals. The methods are evaluated using two sets of custom-prepared paint samples, as well as a 16th-century painting, discussing the identification, mapping, and semi-quantitative analysis of the considered pigments. We found SWIR RIS to be a pigment-specific method with a longer linear range but inferior LODs and penetration depth when compared to MA-XRF, the latter is often not capable of discriminating between different pigments with identical elemental markers. We furthermore present a novel color scale that allows the simultaneous visualization of signals above and below a confidence limit.Team Matthias AlfeldMaterials Science and EngineeringTeam Raf Van de Pla

    MALDI TIMS IMS of Disialoganglioside Isomers GD1a and GD1b in Murine Brain Tissue

    No full text
    Gangliosides are acidic glycosphingolipids, containing ceramide moieties and oligosaccharide chains with one or more sialic acid residue(s) and are highly diverse isomeric structures with distinct biological roles. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables the untargeted spatial analysis of gangliosides, among other biomolecules, directly from tissue sections. Integrating trapped ion mobility spectrometry with MALDI IMS allows for the analysis of isomeric lipid structures in situ. Here, we demonstrate the gas-phase separation and identification of disialoganglioside isomers GD1a and GD1b that differ in the position of a sialic acid residue, in multiple samples, including a standard mixture of both isomers, a biological extract, and directly from thin tissue sections. The unique spatial distributions of GD1a/b (d36:1) and GD1a/b (d38:1) isomers were determined in rat hippocampus and spinal cord tissue sections, demonstrating the ability to structurally characterize and spatially map gangliosides based on both the carbohydrate chain and ceramide moieties.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Raf Van de Pla

    Microscopy-Directed Imaging Mass Spectrometry for Rapid High Spatial Resolution Molecular Imaging of Glomeruli

    No full text
    The glomerulus is a multicellular functional tissue unit (FTU) of the nephron that is responsible for blood filtration. Each glomerulus contains multiple substructures and cell types that are crucial for their function. To understand normal aging and disease in kidneys, methods for high spatial resolution molecular imaging within these FTUs across whole slide images is required. Here we demonstrate a workflow using microscopy-driven selected sampling to enable 5 ÎĽm pixel size matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) of all glomeruli within whole slide human kidney tissues. Such high spatial resolution imaging entails large numbers of pixels, increasing the data acquisition times. Automating FTU-specific tissue sampling enables high-resolution analysis of critical tissue structures, while concurrently maintaining throughput. Glomeruli were automatically segmented using coregistered autofluorescence microscopy data, and these segmentations were translated into MALDI IMS measurement regions. This allowed high-throughput acquisition of 268 glomeruli from a single whole slide human kidney tissue section. Unsupervised machine learning methods were used to discover molecular profiles of glomerular subregions and differentiate between healthy and diseased glomeruli. Average spectra for each glomerulus were analyzed using Uniform Manifold Approximation and Projection (UMAP) and k-means clustering, yielding 7 distinct groups of differentiated healthy and diseased glomeruli. Pixel-wise k-means clustering was applied to all glomeruli, showing unique molecular profiles localized to subregions within each glomerulus. Automated microscopy-driven, FTU-targeted acquisition for high spatial resolution molecular imaging maintains high-throughput and enables rapid assessment of whole slide images at cellular resolution and identification of tissue features associated with normal aging and disease.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Raf Van de Pla

    Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP)

    No full text
    The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Erratum at https://doi.org/10.1038/s41556-024-01384-0Pattern Recognition and BioinformaticsTeam Raf Van de Pla

    The chromatin landscape of healthy and injured cell types in the human kidney

    No full text
    There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney’s active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.Pattern Recognition and BioinformaticsTeam Raf Van de Pla

    Visualizing Staphylococcus aureus pathogenic membrane modification within the host infection environment by multimodal imaging mass spectrometry

    No full text
    Bacterial pathogens have evolved virulence factors to colonize, replicate, and disseminate within the vertebrate host. Although there is an expanding body of literature describing how bacterial pathogens regulate their virulence repertoire in response to environmental signals, it is challenging to directly visualize virulence response within the host tissue microenvironment. Multimodal imaging approaches enable visualization of host-pathogen molecular interactions. Here we demonstrate multimodal integration of high spatial resolution imaging mass spectrometry and microscopy to visualize Staphylococcus aureus envelope modifications within infected murine and human tissues. Data-driven image fusion of fluorescent bacterial reporters and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry uncovered S. aureus lysyl-phosphatidylglycerol lipids, localizing to select bacterial communities within infected tissue. Absence of lysyl-phosphatidylglycerols is associated with decreased pathogenicity during vertebrate colonization as these lipids provide protection against the innate immune system. The presence of distinct staphylococcal lysyl-phosphatidylglycerol distributions within murine and human infections suggests a heterogeneous, spatially oriented microbial response to host defenses.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Raf Van de Pla
    corecore