108 research outputs found

    Graphene-WS2_2 heterostructures for tunable spin injection and spin transport

    Get PDF
    We report the first measurements of spin injection in to graphene through a 20 nm thick tungsten disulphide (WS2_2) layer, along with a modified spin relaxation time ({\tau}s) in graphene in the WS2_2 environment, via spin-valve and Hanle spin-precession measurements, respectively. First, during the spin-injection into graphene through a WS2_2-graphene interface, we can tune the interface resistance at different current bias and modify the spin injection efficiency, in a correlation with the conductivity-mismatch theory. Temperature assisted tunneling is identified as a dominant mechanism for the charge transport across the interface. Second, we measure the spin transport in graphene, underneath the WS2_2 crystal and observe a significant reduction in the {\tau}s down to 17 ps in graphene in the WS2_2 covered region, compared to that in its pristine state. The reduced {\tau}s indicates the WS2_2-proximity induced additional dephasing of the spins in graphene.Comment: 7 Pages, 6 figure

    Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: progress and perspectives

    Get PDF
    The current research in graphene spintronics strives for achieving a long spin lifetime, and efficient spin injection and detection in graphene. In this article, we review how hexagonal boron nitride (hBN) has evolved as a crucial substrate, as an encapsulation layer, and as a tunnel barrier for manipulation and control of spin lifetimes and spin injection/detection polarizations in graphene spin valve devices. First, we give an overview of the challenges due to conventional SiO2_2 substrate for spin transport in graphene followed by the progress made in hBN based graphene heterostructures. Then we discuss in detail the shortcomings and developments in using conventional oxide tunnel barriers for spin injection into graphene followed by introducing the recent advancements in using the crystalline single/bi/tri-layer hBN tunnel barriers for an improved spin injection and detection which also can facilitate two-terminal spin valve and Hanle measurements, at room temperature, and are of technological importance. A special case of bias induced spin polarization of contacts with exfoliated and chemical vapour deposition (CVD) grown hBN tunnel barriers is also discussed. Further, we give our perspectives on utilizing graphene-hBN heterostructures for future developments in graphene spintronics.Comment: Review, Author submitted manuscript - draft; 25 pages, 8 figure

    Spin-Dependent Electron Transmission Model for Chiral Molecules in Mesoscopic Devices

    Get PDF
    Various device-based experiments have indicated that electron transfer in certain chiral molecules may be spin-dependent, a phenomenon known as the Chiral Induced Spin Selectivity (CISS) effect. However, due to the complexity of these devices and a lack of theoretical understanding, it is not always clear to what extent the chiral character of the molecules actually contributes to the magnetic-field-dependent signals in these experiments. To address this issue, we report here an electron transmission model that evaluates the role of the CISS effect in two-terminal and multi-terminal linear-regime electron transport experiments. Our model reveals that for the CISS effect, the chirality-dependent spin transmission is accompanied by a spin-flip electron reflection process. Furthermore, we show that more than two terminals are required in order to probe the CISS effect in the linear regime. In addition, we propose two types of multi-terminal nonlocal transport measurements that can distinguish the CISS effect from other magnetic-field-dependent signals. Our model provides an effective tool to review and design CISS-related transport experiments, and to enlighten the mechanism of the CISS effect itself

    Linear-response magnetoresistance effects in chiral systems

    Get PDF
    The chirality-induced spin selectivity (CISS) effect enables the detection of chirality as electrical charge signals. It is often studied using a two-terminal circuit geometry where a ferromagnet is connected to a chiral component, and a change of electrical resistance is reported upon magnetization reversal. This is however not expected in the linear response regime because of compensating reciprocal processes, limiting the interpretation of experimental results. Here we show that magnetoresistance effects can indeed appear even in the linear response regime, either by changing the magnitude or the direction of the magnetization or an applied magnetic field. We illustrate this in a spin-valve device and in a chiral thin film as the CISS-induced Hanle magnetoresistance (CHMR) effect. This effect helps to distinguish spin-transport-related effects from other effects, and can thereby provide further insight into the origin of CISS

    Circuit-Model Analysis for Spintronic Devices with Chiral Molecules as Spin Injectors

    Get PDF
    Recent research discovered that charge transfer processes in chiral molecules can be spin selective and named the effect chiral-induced spin selectivity (CISS). Follow-up work studied hybrid spintronic devices with conventional electronic materials and chiral (bio)molecules. However, a theoretical foundation for the CISS effect is still in development and the spintronic signals were not evaluated quantitatively. We present a circuit-model approach that can provide quantitative evaluations. Our analysis assumes the scheme of a recent experiment that used photosystem~I (PSI) as spin injectors, for which we find that the experimentally observed signals are, under any reasonable assumptions on relevant PSI time scales, too high to be fully due to the CISS effect. We also show that the CISS effect can in principle be detected using the same type of solid-state device, and by replacing silver with graphene, the signals due to spin generation can be enlarged four orders of magnitude. Our approach thus provides a generic framework for analyzing this type of experiments and advancing the understanding of the CISS effect

    Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid YIG/Pt system

    Get PDF
    We show the first experimental observation of the platinum (Pt) thickness dependence in a hybrid YIG/Pt system of the inverse spin-Hall effect from spin pumping, over a large frequency range and for different rf powers. From the measurement of the dc voltage (ΔV\Delta\textrm{V}) at the resonant condition and the resistance (RR) of the Pt layer, a strong enhancement of the ratio ΔV/R\Delta\textrm{V}/R has been observed, which is not in agreement with previous studies on the NiFe/Pt system. The origin of this behaviour is still unclear and cannot be explained by the spin transport model that we have used.Comment: 4 pages, 3 figure

    Nonlocal magnon spin transport in yttrium iron garnet with tantalum and platinum spin injection/detection electrodes

    Get PDF
    We study the magnon spin transport in the magnetic insulator yttrium iron garnet (YIG) in a nonlocal experiment and compare the magnon spin excitation and detection for the heavy metal paramagnetic electrodes platinum (Pt|YIG|Pt) and tantalum (Ta|YIG|Ta). The electrical injection and detection processes rely on the (inverse) spin Hall effect in the heavy metals and the conversion between the electron spin and magnon spin at the heavy metal|YIG interface. Pt and Ta possess opposite signs of the spin Hall angle. Furthermore, their heterostructures with YIG have different interface properties, i.e. spin mixing conductances. By varying the distance between injector and detector, the magnon spin transport is studied. Using a circuit model based on the diffusion-relaxation transport theory, a similar magnon relaxation length of ~ 10 \mu m was extracted from both Pt and Ta devices. By changing the injector and detector material from Pt to Ta, the influence of interface properties on the magnon spin transport has been observed. For Ta devices on YIG the spin mixing conductance is reduced compared with Pt devices, which is quantitatively consistent when comparing the dependence of the nonlocal signal on the injector-detector distance with the prediction from the circuit model.Comment: 7 pages, 4 figure

    Non-local spin Seebeck effect in the bulk easy-plane antiferromagnet NiO

    Get PDF
    We report the observation of magnon spin currents generated by the Spin Seebeck effect (SSE) in a bulk single crystal of the easy-plane antiferromagnet NiO. A magnetic field induces a non-degeneracy and thereby an imbalance in the population of magnon modes with opposite spin. A temperature gradient then gives rise to a non-zero magnon spin current. This SSE is measured both in a local and a non-local geometry at 5 \,K in bulk NiO. The magnetic field dependence of the obtained signal is modelled by magnetic field splitting of the low energy magnon modes, affecting the spin Seebeck coefficient. The relevant magnon modes at this temperature are linked to cubic anisotropy and magnetic dipole-dipole interactions. The non-local signal deviates from the expected quadratic Joule heating by saturating at a current from around 75 μA\,\mu A in the injector. The magnon chemical potential does not decay exponentially with distance and inhomogeneities may be the result of local magnon accumulations

    Non-linear spin Seebeck effect due to spin-charge interaction in graphene

    Get PDF
    The abilities to inject and detect spin carriers are fundamental for research on transport and manipulation of spin information. Pure electronic spin currents have been recently studied in nanoscale electronic devices using a non-local lateral geometry, both in metallic systems and in semiconductors. To unlock the full potential of spintronics we must understand the interactions of spin with other degrees of freedom, going beyond the prototypical electrical spin injection and detection using magnetic contacts. Such interactions have been explored recently, for example, by using spin Hall or spin thermoelectric effects. Here we present the detection of non-local spin signals using non-magnetic detectors, via an as yet unexplored non-linear interaction between spin and charge. In analogy to the Seebeck effect, where a heat current generates a charge potential, we demonstrate that a spin current in a paramagnet leads to a charge potential, if the conductivity is energy dependent. We use graphene as a model system to study this effect, as recently proposed. The physical concept demonstrated here is generally valid, opening new possibilities for spintronics
    • …
    corecore