9 research outputs found

    Model for nanopillar growth by focused helium ion-beam-induced deposition

    No full text
    An analytical model for the growth of nanopillars by helium ion-beam-induced deposition is presented and compared to experimental data. This model describes the competition between pillar growth in vertical and lateral directions. It assumes that vertical growth is induced by incident primary ions and type-1 secondary electrons, whereas lateral growth is induced by scattered ions and type-2 secondary ions. An essential element of the model is the notion that depletion of adsorbed precursor molecules occurs only at the pillars’ apex. Depletion impedes vertical growth at the apex, allowing more time for lateral outgrowth of the pillar’s sidewalls. The model describes qualitatively the trends in measured vertical, lateral, and volumetric growth rates of PtC pillars as functions of the ion-beam current. It can be used to design growth experiments and Monte Carlo simulations.QN/Quantum NanoscienceApplied Science

    Nanofabrication with a helium ion microscope

    No full text
    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication [3]. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.Kavli Institute of NanoscienceApplied Science

    Angular Dependence of the Ion-Induced Secondary Electron Emission for He+ and Ga+ Beams

    No full text
    In recent years, novel ion sources have been designed and developed that have enabled focused ion beam machines to go beyond their use as nano-fabrication tools. Secondary electrons are usually taken to form images, for their yield is high and strongly dependent on the surface characteristics, in terms of chemical composition and topography. In particular, the secondary electron yield varies characteristically with the angle formed by the beam and the direction normal to the sample surface in the point of impact. Knowledge of this dependence, for different ion/atom pairs, is thus the first step toward a complete understanding of the contrast mechanism in scanning ion microscopy. In this article, experimentally obtained ion-induced secondary electron yields as a function of the incidence angle of the beam on flat surfaces of Al and Cr are reported, for usual conditions in Ga+ and He+ microscopes. The curves have been compared with models and simulations, showing a good agreement for most of the angle range; deviations from the expected behavior are addressed and explanations are suggested. It appears that the maximum value of the ion-induced secondary electron yield is very similar in all the studied cases; the yield range, however, is consistently larger for helium than for gallium, which partially explains the enhanced topographical contrast of helium microscopes over the gallium focused ion beams.IST/Imaging Science and TechnologyApplied Science

    Pulsed helium ion beam induced deposition: A means to high growth rates

    No full text
    The sub-nanometer beam of a helium ion microscope was used to study and optimize helium-ion beam induced deposition of PtC nanopillars with the (CH3)3Pt(CPCH3) precursor. The beam current, beam dwell time, precursor refresh time, and beam focus have been independently varied. Continuous beam exposure resulted in narrow but short pillars, while pulsed exposure resulted in thinner and higher ones. Furthermore, at short dwell times the deposition efficiency was very high, especially for a defocused beam. Efficiencies were measured up to 20 times the value for continuous exposure conditions. The interpretation of the experimental data was aided by a Monte Carlo simulation of the deposition. The results indicate that two regimes are operational in ion beam induced deposition (IBID). In the first one, the adsorbed precursor molecules originally present in the beam interaction region decompose. After the original precursor layer is consumed, further depletion is averted and growth continues by the supply of molecules via adsorption and surface diffusion. Depletion around the beam impact site can be distinguished from depletion on the flanges of the growing pillars. The Monte Carlo simulations for low precursor surface coverage reproduce measured growth rates, but predict considerably narrower pillars, especially at short dwell times. Both the experiments and the simulations show that the pillar width rapidly increases with increasing beam diameter. Optimal writing strategy, good beam focusing, and rapid beam positioning are needed for efficient and precise fabrication of extended and complex nanostructures by He-IBID.QN/Quantum NanoscienceApplied Science

    C12/02- and Cl2-based Inductively Coupled Plasma Etching of Photonic Crystals in InP: Sidewall Passivation

    No full text
    We have fabricated two-dimensional photonic crystals in InP-based materials with Clz-based inductively coupled plasma etching. To obtain vertical sidewalls, we employ sidewall passivation through addition of Nz or U2 to the plasma. With the Clz/Oz-process we are able to etch 3.2 pm deep holes that have nearly cylindrical shape in the upper 2 pm. The first optical results illustrate the feasibility of our approach, showing over 30 dB transmission reduction in the rK-stopband

    A Ratiometric Readout Circuit for Thermal-Conductivity-Based Resistive COâ‚‚ Sensors

    No full text
    This paper reports a readout circuit for a resistive CO2 sensor, which operates by measuring the CO2-dependent thermal conductivity of air. A suspended hot-wire transducer, which acts both as a resistive heater and temperature sensor, exhibits a CO2-dependent heat loss to the surrounding air, allowing CO2 concentration to be derived from its temperature rise and power dissipation. The circuit employs a dual-mode incremental delta-sigma ADC to digitize these parameters relative to those of an identical, but isolated, reference transducer. This ratiometric approach results in a measurement that does not require precision voltage or power references. The readout circuit uses dynamically-swapped transducer pairs to cancel their baseline-resistance, so as to relax the required dynamic range of the ADC. In addition, dynamic element matching (DEM) is used to bias the transducer pairs at an accurate current ratio, making the measurement insensitive to the precise value of the bias current. The readout circuit has been implemented in a standard 0.16 μm CMOS technology. With commercial resistive micro-heaters, a CO2 sensing resolution of about 200 ppm (1σ) was achieved in a measurement time of 30 s. Similar results were obtained with CMOS-compatible tungsten-wire transducers, paving the way for fully-integrated CO2 sensors for air-quality monitoring.Accepted Author ManuscriptElectronic InstrumentationMicroelectronic

    A CMOS Readout Circuit for Resistive Transducers Based on Algorithmic Resistance and Power Measurement

    No full text
    This paper reports a readout circuit capable of accurately measuring not only the resistance of a resistive transducer, but also the power dissipated in it, which is a critical parameter in thermal flow sensors or thermal-conductivity sensors. A front-end circuit, integrated in a standard CMOS technology, sets the voltage drop across the transducer, and senses the resulting current via an on-chip reference resistor. The voltages across the transducer and the reference resistor are digitized by a time-multiplexed high-resolution analog-todigital converter (ADC) and post-processed to calculate resistance and power dissipation. To obtain accurate resistance and power readings, a voltage reference and a temperature-compensated reference resistor are required. An accurate voltage reference is constructed algorithmically, without relying on precision analog signal processing, by using the ADC to successively digitize the base-emitter voltages of an on-chip bipolar transistor biased at several different current levels, and then combining the results to obtain the equivalent of a precision curvature-corrected bandgap reference with a temperature coefficient of 18 ppm/°C, which is close to the state-of-the-art. We show that the same ADC readings can be used to determine die temperature, with an absolute inaccuracy of ±0.25 °C (5 samples, min-max) after a 1-point trim. This information is used to compensate for the temperature dependence of the on-chip polysilicon reference resistor, effectively providing a temperature-compensated resistance reference. With this approach, the resistance and power dissipation of a 100 Ω transducer have been measured with an inaccuracy of less than ±0.55 Ω and ±0.8%, respectively, from -40 °C to 125 °C.Accepted Author ManuscriptElectronic InstrumentationMicroelectronic
    corecore