809 research outputs found

    Review of photoacoustic flow imaging: its current state and its promises

    Get PDF
    Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages

    Pulsed photoacoustic flow imaging with a handheld system

    Get PDF
    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging—ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole bloo

    Two-dimensional spatiotemporal monitoring of temperature in photothermal therapy using hybrid photoacoustic-ultrasound transmission tomography

    Get PDF
    Recently, we presented an add-on to a photoacoustic (PA) computed tomography imager that permits the simultaneous imaging of ultrasound (US) transmission parameters such as the speed of sound (SOS), without additional measurements or instruments. This method uses strong absorbers positioned outside the object in the path of light for producing laser-induced US to interrogate the object in a conventional PA imager. Here, we investigate the feasibility of using this approach, first with PA to pin-point the location of photothermal therapeutic agents and then with serial SOS tomograms to image and monitor the resulting local temperature changes when the agents are excited with continuous wave (CW) light. As the object we used an agar-based tissue-mimicking cylinder carrying beads embedded with different concentrations of gold nanospheres. PA and SOS tomograms were simultaneously acquired as the gold nanospheres were photothermally heated using a 532-nm CW laser. In a first approximation, using the relation between SOS of water and temperature, the SOS tomograms were converted into temperature maps. The experimental results were verified using simulations: Monte Carlo modeling of light propagation through a turbid medium and using the obtained absorbed energy densities in heat diffusion modeling for spatial temperature distributio
    • …
    corecore