5 research outputs found

    Distribution of Fission Products Palladium, Silver, Cerium and Cesium in the Un-Corroded Areas of the Locally Corroded Sic Layer of a Neutron Irradiated TRISO Fuel Particle

    No full text
    Detailed electron microscopy studies were performed to investigate distribution and composition of fission products in the SiC layer of a tristructural-isotropic-coated particle exhibiting localized corrosion. Previous studies on this particle indicated that pure carbon areas in the SiC layer, resulting from localized corrosion of SiC by Pd, provide pathways for Ag, Cd, and Cs migration. This study reveals the presence of Ag- and/or Cd-containing precipitates in un-corroded SiC areas. Ag and Cd may exist by themselves or coexist with Pd. Ag and Cd mainly transport along SiC grain boundaries. An Ag-Pd-Cd precipitate was identified at a stacking fault inside a SiC grain, suggesting that intragranular transport of Ag and Cd is possible. Ce is present with Pd or Pd-U in some precipitates. U and Ce frequently coexist, whereas Ag and Cd usually do not coexist with U or Ce. No Cs was detected in any precipitates in the areas examined

    Fission Products Distribution in Triso Coated Fuel Particles Irradiated to 3.22 X 10²¹ n/cm² Fast Fluence at 1092°C

    No full text
    Mechanisms by which fission products (especially silver [Ag]) migrate across the coating layers of tristructural isotropic (TRISO) coated fuel particles designed for next generation nuclear reactors have been the subject of a variety of research activities due to the complex nature of the migration mechanisms. This paper presents results obtained from the electron microscopic examination of selected irradiated TRISO coated particles from fuel compact 1-3-1 irradiated in the first Advanced Gas Reactor experiment (AGR-1) that was performed as part of the Next Generation Nuclear Plant (NGNP) project. It is of specific interest to study particles of this compact as they were fabricated using a different carrier gas composition ratio for the SiC layer deposition compared with the baseline coated fuel particles reported on previously. Basic scanning electron microscopy (SEM) and SEM montage investigations of the particles indicate a correlation between the distribution of fission product precipitates and the proximity of the inner pyrolytic carbon (IPyC)-silicon carbide (SiC) interface to the fuel kernel. Transmission electron microscopy (TEM) samples were sectioned by focused ion beam (FIB) technique from the IPyC layer, the SiC layer and the IPyC-SiC interlayer of the coated fuel particle. Detailed TEM and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS) were performed to identify fission products and characterize their distribution across the IPyC and SiC layers in the areas examined. Results indicate the presence of palladium-siliconuranium (Pd-Si-U), Pd-Si, Pd-U, Pd, U, U-Si precipitates in the SiC layer and the presence of Pd-Si-U, Pd-Si, U-Si, U precipitates in the IPyC layer. No Ag-containing precipitates are evident in the IPyC or SiC layers. With increased distance from the IPyC-SiC interface, there are less U-containing precipitates, however, such precipitates are present across nearly the entire SiC layer

    An Efficient and Cost-Effective Method for Preparing Transmission Electron Microscopy Samples from Powders

    No full text
    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder-epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpled discs to electron transparency. Compared with the well established and robust grinding-dimpling-ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders

    Advanced Electron Microscopy and Micro Analytical Technique Development and Application for Irradiated TRISO Coated Particles from the AGR-1 Experiment

    No full text
    A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysis results on selected AGR-1 coated particles
    corecore