301 research outputs found

    Wind and boundary layers in Rayleigh-Benard convection. Part 2: boundary layer character and scaling

    Get PDF
    The effect of the wind of Rayleigh-Benard convection on the boundary layers is studied by direct numerical simulation of an L/H=4 aspect-ratio domain with periodic side boundary conditions for Ra={10^5, 10^6, 10^7} and Pr=1. It is shown that the kinetic boundary layers on the top- and bottom plate have some features of both laminar and turbulent boundary layers. A continuous spectrum, as well as significant forcing due to Reynolds stresses indicates undoubtedly a turbulent character, whereas the classical integral boundary layer parameters -- the shape factor and friction factor (the latter is shown to be dominated by the pressure gradient) -- scale with Reynolds number more akin to laminar boundary layers. This apparent dual behavior is caused by the large influence of plumes impinging onto and detaching from the boundary layer. The plume-generated Reynolds stresses have a negligible effect on the friction factor at the Rayleigh numbers we consider, which indicates that they are passive with respect to momentum transfer in the wall-parallel direction. However, the effect of Reynolds stresses cannot be neglected for the thickness of the kinetic boundary layer. Using a conceptual wind model, we find that the friction factor C_f should scale proportional to the thermal boundary layer thickness as C_f ~ lambda_Theta, while the kinetic boundary layer thickness lambda_u scales inversely proportional to the thermal boundary layer thickness and wind Reynolds number lambda_u ~ lambda_Theta^{-1} Re^{-1}. The predicted trends for C_f and \lambda_u are in agreement with DNS results

    Energy dispersion in turbulent jets. Part 2. A robust model for unsteady jets

    Get PDF
    In this paper we develop an integral model for an unsteady turbulent jet that incorporates longitudinal dispersion of two distinct types. The model accounts for the difference in the rate at which momentum and energy are advected (type I dispersion) and for the local deformation of velocity profiles that occurs in the vicinity of a sudden change in the momentum flux (type II dispersion). We adapt the description of dispersion in pipe flow by Taylor (Proc. R. Soc. Lond. A, vol. 219, 1953, pp. 186–203) to develop a dispersion closure for the longitudinal transportation of energy in unsteady jets. We compare our model’s predictions to results from direct numerical simulation and find a good agreement. The model described in this paper is robust and can be solved numerically using a simple central differencing scheme. Using the assumption that the longitudinal velocity profile in a jet has an approximately Gaussian form, we show that unsteady jets remain approximately straight-sided when their source area is fixed. Straight-sidedness provides an algebraic means of reducing the order of the governing equations and leads to a simple advection–dispersion relation. The physical process responsible for straight-sidedness is type I dispersion, which, in addition to determining the local response of the area of the jet, determines the growth rate of source perturbations. In this regard the Gaussian profile has the special feature of ensuring straight-sidedness and being insensitive to source perturbations. Profiles that are more peaked than the Gaussian profile attenuate perturbations and, following an increase (decrease) in the source momentum flux, lead to a local decrease (increase) in the area of the jet. Conversely, profiles that are flatter than the Gaussian amplify perturbations and lead to a local increase (decrease) in the area of the jet

    Turbulent transport and entrainment in jets and plumes: A DNS study

    Get PDF
    We present a new DNS data set for a statistically axisymmetric turbulent jet, plume and forced plume in a domain of size 40r0_{0} x 40r0_{0} x 60r0_{0}, where r0_{0} is the source diameter. The data set supports the validity of the Priestley and Ball entrainment model in unstratified environments (excluding the region near the source), which is corroborated further by the Wang and Law and Ezzamel et al. experimental data sets, the latter being corrected for a small but influential co-flow that affected the statistics. We show that the second-order turbulence statistics in the core region of the jet and the plume are practically indistinguishable, although there are significant differences near the plume edge. The DNS data indicates that the turbulent Prandtl number is about 0.7 for both jets and plumes. For plumes, this value is a result of the difference in the ratio of the radial turbulent transport of radial momentum and buoyancy. For jets however, the value originates from a different spread of the buoyancy and velocity profiles, in spite of the fact that the ratio of radial turbulent transport terms is approximately unity. The DNS data does not show any evidence of similarity drift associated with gradual variations in the ratio of buoyancy profile to velocity profile widths

    Spatially evolving cascades in temporal planar jets

    Get PDF
    Starting from an alternative decomposition of the turbulent field, a multi-dimensional statistical formalism for the description and understanding of turbulence in free-shear flows is proposed and applied to the symmetries of planar temporal jets. The theoretical framework is based on the exact equation for the second-order moment of the two-point velocity increment and allows us to trace, for the first time, the spatially evolving cascade processes at the basis of turbulence mixing and entrainment. Fascinating reverse energy cascade mechanisms are found to be responsible for the generation of long and wide structures in the interface region. Analogously to two-dimensional turbulence, the energy provided by these spatially ascending reverse cascades is found to be eventually dissipated by viscosity at large scales through friction shearing processes involving a thin cross-flow layer of these large-scale structures. Finally, the external non-turbulent region of the jet is also found to be active from an energetic point of view. It is found that pressure-mediated non-local phenomena of displacement of almost quiescent fluid give rise to non-turbulent fluctuations that in time, through transitional mechanisms, would contribute to the growth of the turbulent jet. Overall, the unexpected paths taken by the scale-energy flux in the combined physical/scale space, which are a substantial novelty with respect to known descriptions of turbulent mixing and entrainment, may have major repercussions on our theoretical understanding and modelling, as anticipated here by reduced equations capable of giving a simple scale-dependent description of the rich dynamics of the flow
    • …
    corecore