191 research outputs found
In situ uniaxial pressure cell for x-ray and neutron scattering experiments
We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes
In situ uniaxial pressure cell for x-ray and neutron scattering experiments
We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes
Determinants of the voltage dependence of G protein modulation within calcium channel β subunits
CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone
Self-evaluation as a tool in developing environmental responsibility
The purpose of the paper is to share the findings of an action research project aimed at exploring the impact of transformative pedagogies on pre-service teachers following an environmental education programme (EEP), offered by the University of Malta. Assessment and evaluation practices of environmental education (EE) and education for sustainable education (ESD) programmes tend to cater just for knowledge content and skills, usually failing to target the development of attitudes and values that promote sustainable lifestyles. The EEP was specifically designed to target the development of pro-environmental values by actively involving students in their learning mainly and providing opportunities for reflection and self-evaluation. The paper analyses qualitative research data obtained from evaluation questionnaires about every study unit in the programme; reflective questionnaires drawing upon the studentsà reflective journals; a focus group interview and in depth one-to-one interviews with individual students. The paper provides studentsà evaluations about the course design and effectiveness that should provide insights for course developers and evaluators seeking to develop EE/ESD programmes that address individual needs through learner centred pedagogies.peer-reviewe
Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1
Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 angstrom and a resolution of 4.2 angstrom for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.Strategic Priority Research Program of Chinese Academy of Sciences [XDB08030202]; National Basic Research Program (973 Program); Ministry of Science & Technology of China [2012CB917200, 2014CB910700]; National Natural Science Foundation of China [31270768]; Ministry of Education of China (111 Program China)SCI(E)PubMedä¸å›½ç§‘æŠ€æ ¸å¿ƒæœŸåˆŠ(ISTIC)[email protected]; [email protected]
Designing nanomaterials with desired mechanical properties by constraining the evolution of their grain shapes
Grain shapes are acknowledged to impact nanomaterials' overall properties. Research works on this issue include grain-elongation and grain-strain measurements and their impacts on nanomaterials' mechanical properties. This paper proposes a stochastic model for grain strain undergoing severe plastic deformation. Most models deal with equivalent radii assuming that nanomaterials' grains are spherical. These models neglect true grain shapes. This paper also proposes a theoretical approach of extending existing models by considering grain shape distribution during stochastic design and modelling of nanomaterials' constituent structures and mechanical properties. This is achieved by introducing grain 'form'. Example 'forms' for 2-D and 3-D grains are proposed. From the definitions of form, strain and Hall-Petch-Relationship to Reversed-Hall-Petch-Relationship, data obtained for nanomaterials' grain size and conventional materials' properties are sufficient for analysis. Proposed extended models are solved simultaneously and tested with grain growth data. It is shown that the nature of form evolution depends on form choice and dimensional space. Long-run results reveal that grain boundary migration process causes grains to become spherical, grain rotation coalescence makes them deviate away from becoming spherical and they initially deviate away from becoming spherical before converging into spherical ones due to the TOTAL process. Percentage deviations from spherical grains depend on dimensional space and form: 0% minimum and 100% maximum deviations were observed. It is shown that the plots for grain shape functions lie above the spherical (control) value of 1 in 2-D grains for all considered grain growth mechanisms. Some plots lie above the spherical value, and others approach the spherical value before deviating below it when dealing with 3-D grains. The physical interpretations of these variations are explained from elementary principles about the different grain growth mechanisms. It is observed that materials whose grains deviate further away from the spherical ones have more enhanced properties, while materials with spherical grains have lesser properties. It is observed that there exist critical states beyond which Hall-Petch Relationship changes to Reversed Hall-Petch Relationship. It can be concluded that if grain shapes in nanomaterials are constrained in the way they evolve, then nanomaterials with desired properties can be designed
- …