9 research outputs found

    Tracking human-computer dialogues in process control applications

    No full text

    Solution space concept: Human-machine interface for 4D trajectory management

    No full text
    The current evolution of the ATM system, led by the SESAR programme in Europe and the NextGen programme in the US, is foreseen to bring a paradigm shift to the work of the air traffic controller. Rather than the current primarily tactical control method, one aims for the introduction of more strategic, 4D (space and time) trajectory management. In both programmes a central role is foreseen for the human operator, aided by higher levels of automation and advanced decision-support tools. Previous work has shown promising results in the design of such automated support tools, however, issues with controller acceptance and intuitiveness were found to be key for their overall acceptability. This paper presents a concept decision-support tool for 4D trajectory management that aims to overcome these issues by directly visualizing action-relevant solution spaces. Rather than imposing a certain control strategy, the solution space visualizes all possible control actions, regardless of their optimality. Results of preliminary validation experiments with partial implementations of the solution space representation demonstrated the viability of the concept, but also highlighted areas for improvement.Control & Simulatio

    Exploring the potential benefits of multi-aircraft trajectory manipulation in future air traffic control

    No full text
    Future Air Traffic Management is expected to shift towards four dimensional trajectory (4DT) management, requiring new decision support tools for air traffic controllers to meet stringent time and position constraints. In previous work, a prototype human-machine interface has been developed for 4D trajectory manipulations of single aircraft. This paper describes a tool for multi-aircraft manipulation and investigates its potential control efficiency benefits. A human-in-the-loop experiment (N = 13) has been conducted using scenarios with sector disruptions and varying conflict geometry. Results show that participants preferred to use multi-aircraft manipulation for groups of aircraft having small convergence angles. Since the current implementation involves re-routing all selected aircraft through one common waypoint (referred to as a 'merge point'), extra additional track miles were flown and airspace robustness reduces. Regarding efficiency and safety, multi-aircraft trajectory manipulation seems favourable only for smaller convergence angles, although this also depends on the way the operators place the aircraft merging points. For future development, attention should be devoted to making flight efficiency constraints of each aircraft more salient, enabling controllers to better time the rerouting multiple aircraft and more fairly distribute re-routing costs.Control & Simulatio

    Continuous Descent Approaches with Variable Flight-Path Angles under Time Constraints

    No full text
    In order to reduce noise nuisance around Schiphol Airport, a Continuous Descent Approach procedure was introduced in the late ’90s. Unfortunately, because unpredictable individual aircraft behavior lead to increased landing intervals for this procedure, it is currently only applied during night time operations. Time-of-Arrival control in the terminal area could reduce the landing interval for this procedure. The research presented in this paper investigates the influence of multiple segments with different flight-path angles on the time of arrival. A new procedure with Variable Flight-path angle (VFA) involving active planning of the approach from the pilot through a pilot support interface, presented in the Vertical Situation Display. A preliminary pilot-in-the-loop evaluation was conducted, to investigate pilot performance, workload and interface usability. Three scenarios were tested, all with different Required Time of Arrival. Workload was low for all scenarios and performance good for the two scenarios with early arrival times. For the scenario with a late arrival time, performance was mediocre. Changes in representation of the flap and gear cues and the addition of Estimated Time of Arrival information might improve the performance.Control & OperationsAerospace Engineerin

    Reducing Motion Sickness by Manipulating an Autonomous Vehicle's Accelerations

    No full text
    Without intervention the widespread adoption of autonomous vehicles could be compromised by an increased incidence of motion sickness compared to conventional cars. To investigate whether passengers' motion sickness can be reduced by manipulating an autonomous vehicle's accelerations on a fixed route without altering the travel time, a human-out-of-the-loop experiment was performed in the SIMONA Research Simulator at Delft University of Technology. The experiment consisted of two different driving conditions, in which an identical 22-km road including 52 curves was travelled in 30 minutes. Condition 1 comprised larger longitudinal, but smaller lateral, acceleration values compared to Condition 2. Experimental results suggested that Condition 1 resulted in more severe motion sickness than Condition 2, with fitted learning curves providing final MIsery SCale scores of 1.19 vs. 0.80. A similar relative difference between the two conditions had been predicted by the 6-DOF Subjective Vertical Conflict model. Hence, this model has the potential to, once further developed, support the design of autonomous vehicles by reducing the need to perform costly, time-consuming experiments.Control & Simulatio

    System provided with an assistance-controller for assisting an operator of the system, control-operation assisting device, control-operation assisting method, driving-operation assisting device, and driving-operation assisting method

    No full text
    A target-travel-path generating circuit calculates a target travel path along which the controlled object can travel in the future from the current controlled object position, an ideal-control-signal calculating circuit calculates a control profile S to travel along the target travel path P, and a difference calculating circuit calculates a difference d between the ideal control magnitude S and a current control magnitude S. An operation system assistance controller controls the operation system based on the magnitude of the calculated difference d to assist the control operation of the operator, the control-operation-state of the operator, the environment-state, and the required operation-precision. Accordingly, it is possible to provide the operator with control operation assistance that is a function of the magnitude of the difference d from an ideal control state, the control-operation-state of the operator, the environment-state, and the required operation-precision, and thus, a control-operation assistance control can be outputted that is suitable for the conditions that characterize the state of the operator, the environment, and the controlled object.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    The effect of steering-system linearity, simulator motion, and truck driving experience on steering of an articulated tractor-semitrailer combination

    No full text
    Steering systems of trucks consist of many linkages, which introduce nonlinearities that may negatively affect steering performance. Nowadays, it is possible to equip steering systems with actuators that provide artificial steering characteristics. However, before new steering systems are deployed in real vehicles, evaluation in a safe and controlled simulator environment is recommended. A much-debated question is whether experiments need to be performed in a motion-base simulator or whether a fixed-base simulator suffices. Furthermore, it is unknown whether simulator-based tests can be validly conducted with a convenience sample of university participants who have not driven a truck before. We investigated the effect of steering characteristic (i.e., nonlinear vs. linear) on drivers’ subjective opinions about the ride and the steering system, and on their objective driving performance in an articulated tractor-semitrailer combination. Thirty-two participants (12 truck drivers and 20 university drivers) each completed eight 5.5-min drives in which the simulator's motion system was either turned on or off and the steering model either resembled a linear (i.e., artificial) or nonlinear (i.e., realistic) system. Per drive, participants performed a lane-keeping task, merged onto the highway, and completed four overtaking manoeuvers. Results showed that the linear steering system yielded less subjective and objective steering effort, and better lane-keeping performance, than the nonlinear system. Consistent with prior research, participants drove a wider path through curves when motion was on compared to when motion was off. Truck drivers exhibited higher steering activity than university drivers, but there were no significant differences between the two groups in lane keeping performance and steering effort. We conclude that for future truck steering systems, a linear system may be valuable for improving performance. Furthermore, the results suggest that on-centre evaluations of steering systems do not require a motion base, and should not be performed using a convenience sample of university students.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent VehiclesBiomechatronics & Human-Machine ControlControl & Simulatio

    Subsidence of organic dredged sediments in an upland deposit in Wormer- en Jisperveld: North Holland, the Netherlands

    No full text
    Land subsidence in low-lying peatlands can be caused by shrinkage and organic matter oxidation. When these areas have networks of ditches and canals for drainage purposes, the sediments that accumulate in the waterways can be used to reverse the process of land subsidence. The objective of this study is to understand how dredged sediments can be used to reverse the process of land subsidence by analysing the contribution of shrinkage and organic matter mineralization to the subsidence observed in an upland deposit. A deposit of dredged sediments in the Wormer- en Jisperveld—North Holland, the Netherlands—was characterized during 17 months in terms of subsidence of the sediments, subsidence of the soil underlying the deposit, geotechnical water content, organic matter content, type of organic matter and nutrients. The deposit was filled to a height of 195 cm, and after 17 months, the subsidence of the sediments was 88 cm. In addition, a subsidence of 19.5 cm of the underlying soil was observed. Subsidence could be attributed to shrinkage since no significant changes in the organic matter content and total organic carbon were observed. The type of organic matter changed in the direction of humification until winter 2014, stabilized from winter 2014 to spring 2015 and changed in the direction of mineralization after the spring of 2015. Subsidence of dredged sediments in upland deposits is caused by shrinkage during the first 17 months. The solution of spreading thinner layers of sediments over the land to decrease the subsidence rates should be explored since the pressure of the deposit on the underlying soil caused an extra subsidence of 19.5 cm.Geo-engineerin

    Time-action and patient experience analyses of locally advanced cervical cancer brachytherapy

    No full text
    BACKGROUND AND PURPOSE: Although MRI-based image guided adaptive brachytherapy (IGABT) for locally advanced cervical cancer (LACC) has resulted in favorable outcomes, it can be logistically complex and time consuming compared to 2D image-based brachytherapy, and both physically and emotionally intensive for patients. This prospective study aims to perform time-action and patient experience analyses during IGABT to guide further improvements. MATERIALS AND METHODS: LACC patients treated with IGABT were included for the time-action (56 patients) and patient experience (29 patients) analyses. Times per treatment step were reported on a standardized form. For the patient experience analysis, a baseline health status was established with the EQ-5D-5L questionnaire and the perceived pain, anxiety and duration for each treatment step were assessed with the NRS-11. RESULTS: The median total procedure time from arrival until discharge was 530 (IQR: 480–565) minutes. Treatment planning (delineation, reconstruction, optimization) required the most time and took 175 (IQR: 145–195) minutes. Highest perceived pain was reported during applicator removal and treatment planning, anxiety during applicator removal, and duration during image acquisition and treatment planning. Perceived pain, anxiety and duration were correlated. Higher pre-treatment pain and anxiety scores were associated with higher perceived pain, anxiety and duration. CONCLUSION: This study highlights the complexity, duration and impact on patient experience of the current IGABT workflow. Patient reported pre-treatment pain and anxiety can help identify patients that may benefit from additional support. Research and implementation of measures aiming at shortening the overall procedure duration, which may include logistical, staffing and technological aspects, should be prioritized.Medical Instruments & Bio-Inspired Technolog
    corecore