524 research outputs found

    Remediation and the Development of Modernist Forms in The Western Home

    Get PDF
    This chapter will proceed in four parts. First, we will articulate our argument for reading The Western Home Monthly through the lens of modernism by exploring the links that have been drawn recently between modernism, the middlebrow, and new media studies. Second, we will outline the method through which The Western Home Monthly was digitized and the tools we used in our analysis. The third section will demonstrate how our distant reading methods helped us to better understand the formal dimensions of the magazine, particularly in terms of the influence of advertising and increasing formal fragmentation. In our fourth section we will analyse a single issue of The Western Home Monthly, showing how a combination of distant and close readings helps us to understand the place of an agrarian middlebrow magazine within the transnational and intermedial phenomenon of modernist culture

    Target Polarization for 2H⃗(e,e′p)n^2 \vec H(e,e'p)n at GeV energies

    Full text link
    We perform a fully relativistic calculation of the 2H⃗(e,e′p)n^2 \vec H(e,e'p)n reaction in the impulse approximation employing the Gross equation to describe the deuteron ground state, and we use the SAID parametrization of the full NN scattering amplitude to describe the final state interactions (FSIs). The formalism for treating target polarization with arbitrary polarization axes is discussed, and general properties of some asymmetries are derived from it. We show results for momentum distributions and angular distributions of various asymmetries that can only be accessed with polarized targets.Comment: 30 pages, 9 figure

    Gauging the spectator equations

    Get PDF
    We show how to derive relativistic, unitary, gauge invariant, and charge conserving three-dimensional scattering equations for a system of hadrons interacting with an electromagnetic field. In the method proposed, the spectator equations describing the strong interactions of the hadrons are gauged using our recently introduced gauging of equations method. A key ingredient in our model is the on-mass-shell particle propagator. We discuss how to gauge this on-mass-shell propagator so that both the Ward-Takahashi and Ward identities are satisfied. We then demonstrate our gauging procedure by deriving the gauge-invariant three-dimensional expression for the deuteron photodisintegration amplitude within the spectator approach.Comment: 17 pages, REVTeX, epsf, 1 Postscript figur

    Origins of order in cognitive activity

    Get PDF
    Most cognitive scientists have run across The War of the Ghosts, a Native American story used by The origin of order in cognition is the topic of this chapter. We begin with a discussion of how order is explained within a traditional approach of information processing. Taking the shortcomings of this account seriously, we then turn to other disciplines -those that have framed the question of order more successfully. The answers have relied on the concept of self-organization, the idea that order can emerge spontaneously from the nonlinear interaction of a system's components. In the remainder of the chapter, we discuss empirical evidence for self-organization in cognition. The accumulated evidence in reasoning, speaking, listening, reading, and remembering motivates a complex system approach to cognition. 20

    Gauging the three-nucleon spectator equation

    Get PDF
    We derive relativistic three-dimensional integral equations describing the interaction of the three-nucleon system with an external electromagnetic field. Our equations are unitary, gauge invariant, and they conserve charge. This has been achieved by applying the recently introduced gauging of equations method to the three-nucleon spectator equations where spectator nucleons are always on mass shell. As a result, the external photon is attached to all possible places in the strong interaction model, so that current and charge conservation are implemented in the theoretically correct fashion. Explicit expressions are given for the three-nucleon bound state electromagnetic current, as well as the transition currents for the scattering processes \gamma He3 -> NNN, Nd -> \gamma Nd, and \gamma He3 -> Nd. As a result, a unified covariant three-dimensional description of the NNN-\gamma NNN system is achieved.Comment: 23 pages, REVTeX, epsf, 4 Postscript figure

    The Single-Particle Spectral Function of 16O^{16}{\rm O}

    Full text link
    The influence of short-range correlations on the pp-wave single-particle spectral function in 16O^{16}{\rm O} is studied as a function of energy. This influence, which is represented by the admixture of high-momentum components, is found to be small in the pp-shell quasihole wave functions. It is therefore unlikely that studies of quasihole momentum distributions using the (e,e′p)(e,e'p) reaction will reveal a significant contribution of high momentum components. Instead, high-momentum components become increasingly more dominant at higher excitation energy. The above observations are consistent with the energy distribution of high-momentum components in nuclear matter.Comment: 5 pages, RevTeX, 3 figure

    Origin of Relativistic Effects in the Reaction D(e,e'p)n at GeV Energies

    Get PDF
    In a series of recent publications, a new approach to the non-relativistic reduction of the electromagnetic current operator in calculations of electro-nuclear reactions has been introduced. In one of these papers, the conjecture that at energies of a few GeV, the bulk of the relativistic effects comes from the current and not from the nuclear dynamics was made, based on the large relativistic effects in the transverse-longitudinal response. Here, we explicitly compare a fully relativistic, manifestly covariant calculation performed with the Gross equation, with a calculation that uses a non-relativistic wave function and a fully relativistic current operator. We find very good agreement up to missing momenta of 400 MeV/c, thus confirming the previous conjecture. We discuss slight deviations in cross sections for higher missing momenta and their possible origin, namely p-wave contributions and off-shell effects.Comment: 25 pages, 11 figure

    Scaling of Dirac Fermions and the WKB approximation

    Full text link
    We discuss a new method for obtaining the WKB approximation to the Dirac equation with a scalar potential and a time-like vector potential. We use the WKB solutions to investigate the scaling behavior of a confining model for quark-hadron duality. In this model, a light quark is bound to a heavy di-quark by a linear scalar potential. Absorption of virtual photons promotes the quark to bound states. The analog of the parton model for this case is for a virtual photon to eject the bound, ground-state quark directly into free continuum states. We compare the scaling limits of the response functions for these two transitions

    Glauber theory of initial- and final-state interactions in (p,2p) scattering

    Get PDF
    We develop the Glauber theory description of initial- and final-state interactions (IFSI) in quasielastic A(p,2p) scattering. We study the IFSI-distortion effects both for the inclusive and exclusive conditions. In inclusive reaction the important new effect is an interaction between the two sets of the trajectories which enter the calculation of IFSI-distorted one-body density matrix for inclusive (p,2p) scattering and are connected with incoherent elastic rescatterings of the initial and final protons on spectator nucleons. We demonstrate that IFSI-distortions of the missing momentum distribution are large over the whole range of missing momentum both for inclusive and exclusive reactions and affect in a crucial way the interpretation of the BNL data on (p,2p) scattering. Our numerical results show that in the region of missing momentum p_{m}\lsim 100-150 MeV/c the incoherent IFSI increase nuclear transparency by 5-10\%. The incoherent IFSI become dominant at p_{m}\gsim 200 MeV/c.Comment: Accepted in Z. Phys.A, Latex, 26 pages, uuencoded 9 figure

    Covariant description of inelastic electron--deuteron scattering:predictions of the relativistic impulse approximation

    Full text link
    Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e,e′p)nd(e,e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q2Q^2 region obtained from the RIA and five other approximations are presented and compared. We conclude that measurements of the unpolarized coincidence cross section and the asymmetry AϕA_\phi, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson Lab.Comment: 54 pages and 24 figure
    • …
    corecore