10 research outputs found

    Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules

    Full text link
    Limited bonding valence, usually accompanied by well-defined directional interactions and selective bonding mechanisms, is nowadays considered among the key ingredients to create complex structures with tailored properties: even though isotropically interacting units already guarantee access to a vast range of functional materials, anisotropic interactions can provide extra instructions to steer the assembly of specific architectures. The anisotropy of effective interactions gives rise to a wealth of self-assembled structures both in the realm of suitably synthesized nano- and micro-sized building blocks and in nature, where the isotropy of interactions is often a zero-th order description of the complicated reality. In this review, we span a vast range of systems characterized by limited bonding valence, from patchy colloids of new generation to polymer-based functionalized nanoparticles, DNA-based systems and proteins, and describe how the interaction patterns of the single building blocks can be designed to tailor the properties of the target final structures

    Distinguishing cells using electro-acoustic spinning

    Get PDF
    Many diseases, including cancer and covid, result in altered mechanical and electric properties of the affected cells. These changes were proposed as disease markers. Current methods to characterize such changes either provide very limited information on many cells or have extremely low throughput. We introduce electro-acoustic spinning (EAS). Cells were found to spin in combined non-rotating AC electric and acoustic fields. The rotation velocity in EAS depends critically on a cell's electrical and mechanical properties. In contrast to existing methods, the rotation is uniform in the field of view and hundreds of cells can be characterized simultaneously. We demonstrate that EAS can distinguish cells with only minor differences in electric and mechanical properties, including differences in age or the number of passages

    Distinguishing cells using electro-acoustic spinning

    No full text
    Abstract Many diseases, including cancer and covid, result in altered mechanical and electric properties of the affected cells. These changes were proposed as disease markers. Current methods to characterize such changes either provide very limited information on many cells or have extremely low throughput. We introduce electro-acoustic spinning (EAS). Cells were found to spin in combined non-rotating AC electric and acoustic fields. The rotation velocity in EAS depends critically on a cell's electrical and mechanical properties. In contrast to existing methods, the rotation is uniform in the field of view and hundreds of cells can be characterized simultaneously. We demonstrate that EAS can distinguish cells with only minor differences in electric and mechanical properties, including differences in age or the number of passages

    Crosslinking of floating colloidal monolayers

    No full text
    Crosslinked colloidal monolayers are promising as templates, lithographic masks, filtration membranes, or membranes for controlled release rates in drug delivery. We demonstrate assembly of monodisperse micron-sized polystyrene (PS) beads at an air/water interface, which are transformed into crystalline monolayers using addition of surface-active agents. Vapor annealing methods with solvents (toluene and xylene) and crosslinking agents (divinylbenzene) were investigated regarding their ability to crosslink these floating monolayers directly at the interface, generating crosslinked membranes with crystal size up to 44 cm2, domain size up to 1.9 mm2, and nano-sized pores (100300 nm). The demonstrated fabrication method emphasizes short fabrication time using a simple setup.(VLID)214305

    Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules

    No full text
    Limited bonding valence, usually accompanied by well-defined directional interactions and selective bonding mechanisms, is nowadays considered among the key ingredients to create complex structures with tailored properties: even though isotropically interacting units already guarantee access to a vast range of functional materials, anisotropic interactions can provide extra instructions to steer the assembly of specific architectures. The anisotropy of effective interactions gives rise to a wealth of self-assembled structures both in the realm of suitably synthesized nano- and micro-sized building blocks and in nature, where the isotropy of interactions is often a zero-th order description of the complicated reality. In this review, we span a vast range of systems characterized by limited bonding valence, from patchy colloids of new generation to polymer-based functionalized nanoparticles, DNA-based systems and proteins, and describe how the interaction patterns of the single building blocks can be designed to tailor the properties of the target final structures
    corecore