22 research outputs found

    Performance of algorithms that reconstruct missing transverse momentum in √s= 8 TeV proton-proton collisions in the ATLAS detector

    Get PDF
    The reconstruction and calibration algorithms used to calculate missing transverse momentum (EmissT ) with the ATLAS detector exploit energy deposits in the calorimeter and tracks reconstructed in the inner detector as well as the muon spectrometer. Various strategies are used to suppress effects arising from additional proton–proton interactions, called pileup, concurrent with the hard-scatter processes. Tracking information is used to distinguish contributions from the pileup interactions using their vertex separation along the beam axis. The performance of the EmissT reconstruction algorithms, especially with respect to the amount of pileup, is evaluated using data collected in proton–proton collisions at a centre-of-mass energy of 8 TeV during 2012, and results are shown for a data sample corresponding to an integrated luminosity of 20.3fb−1. The simulation and modelling of EmissT in events containing a Z boson decaying to two charged leptons (electrons or muons) or a W boson decaying to a charged lepton and a neutrino are compared to data. The acceptance for different event topologies, with and without high transverse momentum neutrinos, is shown for a range of threshold criteria for EmissT , and estimates of the systematic uncertainties in the EmissT measurements are presented.ATLAS Collaboration, for complete list of authors see dx.doi.org/10.1140/epjc/s10052-017-4780-2Funding: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZĆ , Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie SkƂodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, RĂ©gion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [58].</p

    Influencing factors on the suitability of organ-cultured corneas.

    Full text link
    International audiencePURPOSE: To determine the factors related to donor and tissue retrieval, which influence the suitability of organ-cultured corneas for transplantation. PATIENTS AND METHODS: We retrospectively analysed 2596 donor corneas. Polytomic logistic regression analysis was used to assess the influence of various factors (that is, donor age, cause of death, death-to-tissue retrieval time, tissue retrieval-to-reception time, and tissue retrieval method) on the suitability of grafts for transplantation. Positive predictive values (PPVs) were computed. RESULTS: Forty-three percent (1118/2596) of corneas were discarded. The leading cause for discarding corneas was poor endothelial quality (21.5%). Corneas from donors older than 80 years were more likely to be discarded because of endothelial insufficiency (OR=2.37, P=0.001). Longer time between death and tissue retrieval was associated with increased risk of positive serology (OR=1.43, P=0.02). Increased time between tissue retrieval and reception was associated with increased risk of contamination (OR=1.57, P=0.03). PPV increased from 38.5% for corneas retrieved from donors older than 80 years featuring a death-to-tissue retrieval time of more than 6 h and a tissue retrieval-to-reception time of more than 24 h to 64.7% for corneas retrieved from donors younger than 80 years featuring a death-to tissue retrieval time shorter than 6 h and a tissue retrieval-to-reception time shorter than 24 h. CONCLUSION: The percentage of discarded corneas can be reduced by including donors aged 80 years or less, using a time from donor's death to tissue retrieval shorter than 6 h, and a tissue retrieval-to-reception time shorter than 24 h
    corecore