824 research outputs found
Orbital Magnetism and Current Distribution of Two-Dimensional Electrons under Confining Potential
The spatial distribution of electric current under magnetic field and the
resultant orbital magnetism have been studied for two-dimensional electrons
under a harmonic confining potential V(\vecvar{r})=m \omega_0^2 r^2/2 in
various regimes of temperature and magnetic field, and the microscopic
conditions for the validity of Landau diamagnetism are clarified. Under a weak
magnetic field (\omega_c\lsim\omega_0, \omega_c being a cyclotron frequency)
and at low temperature (T\lsim\hbar\omega_0), where the orbital magnetic
moment fluctuates as a function of the field, the currents are irregularly
distributed paramagnetically or diamagnetically inside the bulk region. As the
temperature is raised under such a weak field, however, the currents in the
bulk region are immediately reduced and finally there only remains the
diamagnetic current flowing along the edge. At the same time, the usual Landau
diamagnetism results for the total magnetic moment. The origin of this dramatic
temperature dependence is seen to be in the multiple reflection of electron
waves by the boundary confining potential, which becomes important once the
coherence length of electrons gets longer than the system length. Under a
stronger field (\omega_c\gsim\omega_0), on the other hand, the currents in
the bulk region cause de Haas-van Alphen effect at low temperature as
T\lsim\hbar\omega_c. As the temperature gets higher (T\gsim\hbar\omega_c)
under such a strong field, the bulk currents are reduced and the Landau
diamagnetism by the edge current is recovered.Comment: 15 pages, 11 figure
Spin-orbit Scattering and the Kondo Effect
The effects of spin-orbit scattering of conduction electrons in the Kondo
regime are investigated theoretically. It is shown that due to time-reversal
symmetry, spin-orbit scattering does not suppress the Kondo effect, even though
it breaks spin-rotational symmetry, in full agreement with experiment. An
orbital magnetic field, which breaks time-reversal symmetry, leads to an
effective Zeeman splitting, which can be probed in transport measurements. It
is shown that, similar to weak-localization, this effect has anomalous magnetic
field and temperature dependence.Comment: 10 pages, RevTex, one postscript figure available on request from
[email protected]
Gradient descent learning in and out of equilibrium
Relations between the off thermal equilibrium dynamical process of on-line
learning and the thermally equilibrated off-line learning are studied for
potential gradient descent learning. The approach of Opper to study on-line
Bayesian algorithms is extended to potential based or maximum likelihood
learning. We look at the on-line learning algorithm that best approximates the
off-line algorithm in the sense of least Kullback-Leibler information loss. It
works by updating the weights along the gradient of an effective potential
different from the parent off-line potential. The interpretation of this off
equilibrium dynamics holds some similarities to the cavity approach of
Griniasty. We are able to analyze networks with non-smooth transfer functions
and transfer the smoothness requirement to the potential.Comment: 08 pages, submitted to the Journal of Physics
Many-Body Approch to Spin-Dependent Transport in Quantum Dot Systems
By means of a diagram technique for Hubbard operators we show the existence
of a spin-dependent renormalization of the localized levels in an interacting
region, e.g. quantum dot, modeled by the Anderson Hamiltonian with two
conduction bands. It is shown that the renormalization of the levels with a
given spin direction is due to kinematic interactions with the conduction
sub-bands of the opposite spin. The consequence of this dressing of the
localized levels is a drastically decreased tunneling current for
ferromagnetically ordered leads compared to that of paramagnetically ordered
leads. Furthermore, the studied system shows a spin-dependent resonant
tunneling behaviour for ferromagnetically ordered leads.Comment: 8 pages, 5 figure
On the perturbative expansion of the magnetization in the out-of-equilibrium Kondo model
This paper is concerned with the out-of-equilibrium two-lead Kondo model,
considered as a model of a quantum dot in the Kondo regime. We revisit the
perturbative expansion of the dot's magnetization, and conclude that, even at
order 0 in the Kondo interactions, the magnetization is not given by the usual
equilibrium result. We use the Schwinger-Keldysh method to derive a Dyson
equation describing the steady state induced by the voltage between the two
leads, and thus present the correct procedure for calculating perturbative
expansions of steady-state properties of the system.Comment: Minor corrections forgotten in v
Suppression of current in transport through parallel double quantum dots
We report our study of the I-V curves in the transport through the quantum
dot when an additional quantum dot lying in the Kondo regime is side-connected
to it. Due to the Kondo scattering off the effective spin on a side-connected
quantum dot the conductance is suppressed at low temperatures and at low
source-drain bias voltages. This zero-bias anomaly is understood as enhanced
Kondo scattering with decreasing temperature.Comment: 14 pages, 8 figure
Restoration of endogenous wild-type p53 activity in a glioblastoma cell line with intrinsic temperature-sensitive p53 induces growth arrest but not apoptosis.
p53 protein is a transcription factor involved in multiple tumor-suppressor activities including cell cycle control and apoptosis. TP53 gene is frequently mutated in glioblastoma, suggesting the importance of inactivation of this gene product in gliomagenesis. Restoration of p53 function in glioblastoma cell lines deficient for p53 has shown that p53 induces growth arrest or apoptosis depending on the cell line and vector used to transduce wild-type TP53 alleles. Considering that astrocytes grow and express p53, it is not clear whether these results reflect physiologic responses or the result of p53 overexpression in combination with cellular responses to viral vector infection. Here, we reassessed this issue using a glioblastoma cell line (LN382) that expresses an endogenous temperature-sensitive mutant p53. This cell line expresses TP53 alleles (100% as determined by a p53 transcriptional assay in yeast) mutated at codon 197 GTG (Val) > CTG (Leu). We found that the p53 protein in these cells acted as an inactive mutant at 37 degrees C and as a functional wild-type p53 below 34 degrees C as demonstrated by several lines of evidence, including (i) restoration of transactivating ability in yeast, (ii) induction of p53-modulated genes such as CDKN1(p21) and transforming growth factor-alpha, (iii) disappearance of accumulated p53 protein in the nucleus and (iv) decrease in steady state p53 protein levels. This temperature switch allowed p53 levels, which were close to physiological levels to dramatically reduce LN382 cell proliferation by inducing a G(1)/S cell cycle block, but not to induce apoptosis. The lack of apoptosis was considered to be a result of the low level p53 expression, because increasing wild-type p53 levels by adenoviral-mediated gene transfer caused apoptosis in these cells. The LN382 cell line will be extremely useful for investigations into the roles of p53 in cellular responses to a variety of stimuli or damages
The emergence of embedded structure:Insights from Kafr Qasem Sign Language
This paper introduces data from Kafr Qasem Sign Language, an as-yet undescribed sign language, and identifies the earliest indications of embedding in this young language. Using semantic and prosodic criteria, we identify predicates that form a constituent with a noun, functionally modifying it. We analyze these structures as instances of embedded predicates, exhibiting what can be regarded as very early stages in the development of subordinate constructions, and argue that these structures may bear directly on questions about the development of embedding and subordination in language in general. Deutscher (2009) argues persuasively that nominalization of a verb is the first step -- and the crucial step -- towards syntactic embedding. It has also been suggested that prosodic marking may precede syntactic marking of embedding (Mithun 2009). However, the relevant data from the stage at which embedding first emerges have not previously been available. Kafr Qasem Sign Language might be the missing piece of the puzzle: a language in which a noun can be modified by an additional predicate, forming a proposition within a proposition, sustained entirely by prosodic means
- …