11 research outputs found

    Metallothioneins and brain injury: What transgenic mice tell us

    Full text link
    In rodents, the metallothionein (MT) family is composed of four members, MT-1 to MT-4. MT-1&2 are expressed in virtually all tissues including those of the Central Nervous System (CNS), while MT-3 (also called Growth Inhibitory Factor) and MT-4 are expressed prominently in the brain and in keratinizing epithelia, respectively. For the understanding of the physiological functions of these proteins in the brain, the use of transgenic mice has provided essential information. Results obtained inMT-1&2-null mice and in MT-1-overexpressing mice strongly suggeset that these MT isoforms are important antioxidant, anti-inflammatory and antiapoptotic proteins in the brain. Results inMT-3-null mice show a very different pattern, with no support for MT-1&2-like functions. Rather, MT-3 could be involved in neuronal sprouting and survival. Results obtained in a model of peripheral nervous system injury also suggest that MT-3 could be involved in the control of nerve growth

    Mitochondrial Permeability Transition in the CNS - Composition, Regulation, and Pathophysiological Relevance

    Full text link
    Mitochondrial permeability transition (MPT) is induced in isolated brain mitochondria by calcium and oxidants and is inhibited by adenine nucleotides. When induced, MPT is associated with equilibration of solutes of <1500 Da across the inner mitochondrial membrane. A persistent induction of MPT depolarizes the inner membrane and causes cessation of ATP synthesis, swelling of the matrix, and bursting of the mitochondrial membranes. The rupture of the membranes releases calcium stored in the mitochondrial matrix and apoptogenic factors from the intermembrane space, leading to cell death. MPT has been implicated in acute brain injury and neurodegenerative disease since inhibitors of MPT such as cyclosporin A (CsA) are brain protective. Whether MPT has a physiological role is unclear, but MPT may be important in calcium homeostasis under conditions of excessive neuronal activity

    Fermente

    Full text link
    corecore