5 research outputs found

    Combining HPAEC-PAD, PGC-LC-MS, and 1D <sup>1</sup>H NMR to Investigate Metabolic Fates of Human Milk Oligosaccharides in 1-Month-Old Infants:A Pilot Study

    Get PDF
    A solid-phase extraction procedure was optimized to extract 3-fucosyllactose and other human milk oligosaccharides (HMOs) from human milk samples separately, followed by absolute quantitation using high-performance anion-exchange chromatography-pulsed amperometric detection and porous graphitized carbon-liquid chromatography-mass spectrometry, respectively. The approach developed was applied on a pilot sample set of 20 human milk samples and paired infant feces collected at around 1 month postpartum. One-dimensional 1H nuclear magnetic resonance spectroscopy was employed on the same samples to determine the relative levels of fucosylated epitopes and sialylated (Neu5Ac) structural elements. Based on different HMO consumption patterns in the gastrointestinal tract, the infants were assigned to three clusters as follows: complete consumption; specific consumption of non-fucosylated HMOs; and, considerable levels of HMOs still present with consumption showing no specific preference. The consumption of HMOs by infant microbiota also showed structure specificity, with HMO core structures and Neu5Ac(α2-3)-decorated HMOs being most prone to degradation. The degree and position of fucosylation impacted HMO metabolization differently. </p

    Integrating Archaeological Theory and Predictive Modeling: a Live Report from the Scene

    Full text link

    Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples

    No full text
    Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups

    Correlating Infant Fecal Microbiota Composition and Human Milk Oligosaccharide Consumption by Microbiota of 1-Month-Old Breastfed Infants

    Get PDF
    Scope: Understanding the biological functions of human milk oligosaccharides (HMOs) in shaping gastrointestinal (GI) tract microbiota during infancy is of great interest. A link between HMOs in maternal milk and infant fecal microbiota composition is examined and the role of microbiota in degrading HMOs within the GI tract of healthy, breastfed, 1-month-old infants is investigated. Methods and results: Maternal breast milk and infant feces are from the KOALA Birth Cohort. HMOs are quantified in milk and infant fecal samples using liquid chromatography-mass spectrometry. Fecal microbiota composition is characterized using Illumina HiSeq 16S rRNA gene amplicon sequencing. The composition is associated with gender, delivery mode, and milk HMOs: Lacto-N-fucopentaose I and 2′-fucosyllactose. Overall, Bifidobacterium, Bacteroides, Escherichia–Shigella, and Parabacteroides are predominating genera. Three different patterns in infant fecal microbiota structure are detected. GI degradation of HMOs is strongly associated with fecal microbiota composition, and there is a link between utilization of specific HMOs and relative abundance of various phylotypes (operational taxonomic units). Conclusions: HMOs in maternal milk are among the important factors shaping GI tract microbiota in 1-month-old breastfed infants. An infant's ability to metabolize different HMOs strongly correlates with fecal microbiota composition and specifically with phylotypes within genera Bifidobacterium, Bacteroides, and Lactobacillus.</p
    corecore