87 research outputs found
Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation
Tensin-3 is involved in osteogenic versus adipogenic fate of human bone marrow stromal cells
Background: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. Methods: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. Results:Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. Conclusions: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.</p
The development and application of a bibliometric strength, potential and risk analysis for research strategy in a University Medical Center
This paper describes the development of a bibliometric strength, potential and risk analysis tool, and its applications for research strategy and evaluation. We focus specifically on the motivation, organizational strategic needs, the development and evaluation of the tool. Furthermore, we highlight the co-creation process of the tool and discuss the methodology behind the tool, how it works and initial feedback on how insights from the tool can be applied for research strategy and evaluation.</p
Organic phosphate but not inorganic phosphate regulates Fgf23 expression through MAPK and TGF-ꞵ signaling
One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 were only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in cells treated with organic phosphate while cells treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-β signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-β regulator Skil decreased this response. In summary, the observed differential response of FGF23-producing to phosphate types may have consequences for phosphate homeostasis.</p
Organic phosphate but not inorganic phosphate regulates Fgf23 expression through MAPK and TGF-ꞵ signaling
One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis are unclear. This study used MC3T3-E1 FGF23-producing cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 were only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in cells treated with organic phosphate while cells treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-β signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-β regulator Skil decreased this response. In summary, the observed differential response of FGF23-producing to phosphate types may have consequences for phosphate homeostasis.</p
Effect of calcium and cholecalciferol supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus) and African elephants (Loxodonta Africana)
The aim of the current study was to assess the effect of oral calcium and cholecalciferol
supplementation on several parameters of calcium status in plasma and urine of captive Asian (Elephas maximus;
n = 10) and African elephants (Loxodonta africana; n = 6) and to detect potential species differences. Calcium and
cholecalciferol supplementation were investigated in a feeding trial using a crossover design consisting of five
periods of 28 days each in summer. From days 28–56 (period 2), elephants were fed the Ca-supplemented diet and
from days 84–112, elephants were fed the cholecalciferol-supplemented diet (period 4). The control diet was fed
during the other periods and was based on their regular ration, and the study was repeated similarly during winter.
Periods 1, 3, and 5 were regarded as washout periods. This study revealed species-specific differences with
reference to calcium and cholecalciferol supplementation. Asian elephants showed a significant increase in mean
plasma total calcium concentration following calcium supplementation during summer, suggesting summerassociated
subclinical hypocalcemia in Western Europe. During winter, no effect was seen after oral calcium
supplementation, but a significant increase was seen both in mean plasma, total, and ionized calcium
concentrations after cholecalciferol supplementation in Asian elephants. In contrast, evidence of subclinical
hypocalcemia could be demonstrated neither in summer nor in winter in African elephants, although 28 days of
cholecalciferol supplementation during winter reversed the decrease in plasma 1,25(OH)2-cholecalciferol and was
followed by a significant increase in mean plasma total calcium concentration. Preliminary findings indicate that
the advisable permanent daily intake for calcium in Asian elephants and cholecalciferol in both elephant species at
least during winter might be higher than current guidelines. It is strongly recommended to monitor blood calcium
concentrations and, if available, blood parathyroid hormone levels to adjust the nutritional supplementation for
each individual elephant.http://zoowildlifejournal.com/am201
Dynamic strain and β-catenin mediated suppression of interferon responsive genes in quiescent mesenchymal stromal/stem cells
Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis. The sensitivity of MSCs to external mechanical forces may be altered by cessation of proliferation, when MSCs begin to express extracellular matrix (ECM) proteins and generate cell/cell contact. Therefore, we assessed whether and how gene expression of proliferating versus quiescent MSCs responds to mechanical stimuli. We used RNA-seq and RT-qPCR to evaluate transcriptomes at 3 h after dynamic strain (200 cycles × 2 % for 20 min) once daily during a two-day time course in naïve (uninduced) MSCs. Transcriptomes of untreated MSCs show that cells become quiescent at day 2 when proliferation markers are downregulated, and ECM related genes are upregulated. On both day 1 and day 2, dynamic strain stimulates expression of oxidative stress related genes (e.g., Nqo1, Prl2c2, Prl2c3). Strikingly, in quiescent MSCs, we observe that dynamic strain suppresses multiple interferon (IFN) responsive genes (e.g., Irf7, Oasl2 and Isg15). IFN responsive genes are activated in MSCs depleted of β-catenin using siRNAs, indicating that β-catenin normally suppresses these genes. Our data indicate that the functional effects of dynamic strain and β-catenin on IFN responsive genes in MSCs are mechanistically coupled. Because dynamic strain and β-catenin reduce the osteogenic potential of MSCs, our findings suggest that IFN responsive genes are novel biomarkers and potential regulators of mechanical responses at early stages of lineage-commitment in post-proliferative MSCs.</p
Inhibition of Breast Cancer Cell Growth by Combined Treatment with Vitamin D3 Analogues and Tamoxifen
The steroid hormone 1,25-dihydroxyvitamin D3 [l,25-(OH)2D3] has potential to be used as an antitumor agent, but its clinical application is restricted by the strong calcemic activity. Therefore, new vitamin D3 analogues are developed with increased growth inhibitory and reduced calcemic activity. In the present study, we have examined the antiproliferative effects of four novel vitamin D3 analogues (CB966, EB1089, KH1060, and 22-oxa-calcitriol) on breast cancer cells, either alone or in combination with the antiestrogen tamoxifen. The estrogen-dependent ZR-75-1 and estrogen-responsive MCF-7 cell lines were used as a model. It was shown that, with EB1089 and KH1060, the same growth inhibitory effect as l,25-(OH)2D3 could be reached at up to 100-fold lower concentrations, whereas CB966 and 22-oxa-calcitriol were nearly equipotent with 1,25-(OH)2D3. The growth inhibition by the vitamin D3 compounds could be augmented by combined treatment with tamoxifen. At the maximal effective concentrations of the vitamin D3 compounds, the effect of combined treatment was additive (MCF-7 cells) or less than additive (ZR-75-1 cells). Tamoxifen increased the sensitivity of the cells to the vitamin D3 compounds 2- to 4000-fold, which was expressed by a shift to lower median effective concentration values. Thereby, the vitamin D3 compounds may be used at even lower dosages in combination therapy with tamoxifen. A major problem of tamoxifen therapy is the development of tamoxifen resistance. We have observed that tamoxifen-resistant clones of ZR-75-1 cells retain their response to the vitamin D3 compounds. Regulation of the growth-related oncogene c-myc (mRNA level) and the estrogen receptor (protein level) were studied but appeared not to be related to the antiproliferative action of the vitamin D3 compounds. Together, our data point to a potential benefit of combination therapy with 1,25-(OH)2D3 or vitamin D3 analogues and tamoxifen for the treatment of breast cancer.</p
Identification of small molecules as novel anti-adipogenic compounds based on Connectivity Map
Several physiological and pathological conditions such as aging, obesity, diabetes, anorexia nervosa are associated with increased adipogenesis in the bone marrow. A lack of effective drugs hinder the improved treatment for aberrant accumulation of bone marrow adipocytes. Given the higher costs, longer duration and sometimes lack of efficacy in drug discovery, computational and experimental strategies have been used to identify previously approved drugs for the treatment of diseases, also known as drug repurposing. Here, we describe the method of small molecule-prioritization by employing adipocyte-specific genes using the connectivity map (CMap). We then generated transcriptomic profiles using human mesenchymal stromal cells under adipogenic differentiation with the treatment of prioritized compounds, and identified emetine and kinetin-riboside to have a potent inhibitory effect on adipogenesis. Overall, we demonstrated a proof-of-concept method to identify repurposable drugs capable of inhibiting adipogenesis, using the Connectivity Map
- …
