2 research outputs found

    The coexistence of superconductivity and ferromagnetism in nano-scale metallic grains

    Full text link
    A nano-scale metallic grain in which the single-particle dynamics are chaotic is described by the so-called universal Hamiltonian. This Hamiltonian includes a superconducting pairing term and a ferromagnetic exchange term that compete with each other: pairing correlations favor minimal ground-state spin, while the exchange interaction favors maximal spin polarization. Of particular interest is the fluctuation-dominated regime where the bulk pairing gap is comparable to or smaller than the single-particle mean level spacing and the Bardeen-Cooper-Schrieffer theory of superconductivity breaks down. Superconductivity and ferromagnetism can coexist in this regime. We identify signatures of the competition between superconductivity and ferromagnetism in a number of quantities: ground-state spin, conductance fluctuations when the grain is weakly coupled to external leads and the thermodynamic properties of the grain, such as heat capacity and spin susceptibility.Comment: 13 pages, 13 figures, Proceedings of the Conference on the Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT11
    corecore