55 research outputs found
The application of Phase 0 and microtracer approaches in early clinical development: past, present, and future
Phase 0 microdosing studies were introduced to the drug development community approximately 20 years ago. A microdose is defined as less than 1/100th of the dose calculated based on animal data to yield a pharmacological effect in humans, with a maximum of 100 μg, or 30 nmoles for protein products. In our experience, Phase 0 microdose studies have not been fully embraced by the pharmaceutical industry. This notion is based on the number of Phase 0 studies that we have been involved in. Thus, we conducted at least 17 Phase 0 microdose studies in the Zero’s (on average, two per year), but in the years beyond this, it was only 15 studies (1.4 per year); in these latter years, we did conduct a total of 23 studies which employed an intravenous (i.v.) microdose for absolute bioavailability (ABA) assessments (two per year on average), which are the most used and potentially informative type of clinical study using a microdose, albeit they are formally not microdose studies. In the current review, we summarize the past use of and experience with Phase 0 microdose designs in early clinical development, including intravenous 14C microdose ABA studies, and assess what is needed to increase the adoption of useful applications of Phase 0/microdose studies in the near future
Intergenerationele solidariteit en individualiteit in de tweede pensioenpijler: een scenario-analyse
Political Scienc
Transient CDK4/6 inhibition protects hematopoietic stem cells from chemotherapy-induced exhaustion
Conventional cytotoxic chemotherapy is highly effective in certain cancers, but causes dose-limiting damage to normal proliferating cells, especially hematopoietic stem and progenitor cells (HSPCs). Serial exposure to cytotoxics causes a long-term hematopoietic compromise (‘exhaustion’), which limits the use of chemotherapy and success of cancer therapy. Here, we show that the co-administration of G1T28 (trilaciclib), a small-molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), contemporaneously with cytotoxic chemotherapy protects murine hematopoietic stem cells (HSCs) from chemotherapy-induced exhaustion in a serial 5-fluorouracil (5FU) treatment model. Consistent with a cell intrinsic effect, we show directly preserved HSC function resulting in a more rapid recovery of peripheral blood counts, enhanced serial transplantation capacity and reduced myeloid skewing. When administered to healthy human volunteers, G1T28 demonstrated excellent in vivo pharmacology and transiently inhibited bone marrow (BM) HSPC proliferation. These findings suggest that the combination of CDK4/6 inhibitors (CDK4/6i) with cytotoxic chemotherapy should provide a means to attenuate therapy-induced BM exhaustion in patients with cancer
HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion
Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Balans hormonen bepaalt ontwikkeling, groei en weerbaarheid gewas : Licht, temperatuur en stress sturen de balans
Hormonen sturen heel veel processen in de plant aan. Het gaat meestal niet om individuele hormonen, maar om de balans tussen verschillende soorten. Door teeltmaatregelen kun je die balans beïnvloeden. De inzichten groeien, maar sturing op hormonen is een complexe zaak
- …