362 research outputs found

    Hierarchical development of dominance through the winner-loser effect and sociospatial structure

    Get PDF
    In many groups of animals the dominance hierarchy is linear. What mechanisms underlie this linearity of the dominance hierarchy is under debate. Linearity is often attributed to cognitively sophisticated processes, such as transitive inference and eavesdropping. An alternative explanation is that it develops via the winner-loser effect. This effect implies that after a fight has been decided the winner is more likely to win again, and the loser is more likely to lose again. Although it has been shown that dominance hierarchies may develop via the winner-loser effect, the degree of linearity of such hierarchies is unknown. The aim of the present study is to investigate whether a similar degree of linearity, like in real animals, may emerge as a consequence of the winner-loser effect and the socio-spatial structure of group members. For this purpose, we use the model DomWorld, in which agents group and compete and the outcome of conflicts is self-reinforcing. Here dominance hierarchies are shown to emerge. We analyse the dominance hierarchy, behavioural dynamics and network triad motifs in the model using analytical methods from a previous study on dominance in real hens. We show that when one parameter, representing the intensity of aggression, was set high in the model DomWorld, it reproduced many patterns of hierarchical development typical of groups of hens, such as its high linearity. When omitting from the model the winner-loser effect or spatial location of individuals, this resemblance decreased markedly. We conclude that the combination of the spatial structure and the winner-loser effect provide a plausible alternative for hierarchical linearity to processes that are cognitively more sophisticated. Further research should determine whether the winner-loser effect and spatial structure of group members also explains the characteristics of hierarchical development in other species with a different dominance style than hens

    Memory in Clark’s Nutcrackers:A Cognitive Model for Corvids

    Get PDF
    Computational modeling has rarely been used to study questions in animal cognition, despite its apparent benefits. In this paper, we aim to demonstrate the value of this approach by focusing on work with Clark’s nutcrackers. Like all corvids, these birds cache and recover food, by burying it under ground and returning to it later. With our computational model, we successfully replicate three laboratory experiments investigating this behavior. In the process, we provide the first integrated computational account of several behavioral effects of memory observed in corvid caching and recovery, in addition to a new explanation for a known empirical result.</p

    Memory in Clark’s Nutcrackers:A Cognitive Model for Corvids

    Get PDF
    Computational modeling has rarely been used to study questions in animal cognition, despite its apparent benefits. In this paper, we aim to demonstrate the value of this approach by focusing on work with Clark’s nutcrackers. Like all corvids, these birds cache and recover food, by burying it under ground and returning to it later. With our computational model, we successfully replicate three laboratory experiments investigating this behavior. In the process, we provide the first integrated computational account of several behavioral effects of memory observed in corvid caching and recovery, in addition to a new explanation for a known empirical result.</p

    What underlies waves of agitation in starling flocks

    Get PDF
    Fast transfer of information in groups can have survival value. An example is the so-called wave of agitation observed in groups of animals of several taxa under attack. It has been shown to reduce predator success. It usually involves the repetition of a manoeuvre throughout the group, transmitting the information of the attack quickly, faster than the group moves itself. The specific manoeuvre underlying a wave is typically known, but not so in starlings (Sturnus vulgaris). Although waves of agitation in starling flocks have been suggested to reflect density waves, exact escape manoeuvres cannot be distinguished because flocks are spatially too far away. Therefore, waves may also reflect orientation waves (due to escape by rolling). In the present study, we investigate this issue in a computational model, StarDisplay. We use this model because its flocks have been shown to resemble starling flocks in many traits. In the model, we show that agitation waves result from changes in orientation rather than in density. They resemble empirical data both qualitatively in visual appearance and quantitatively in wave speed. In the model, local interactions with only two to seven closest neighbours suffice to generate empirical wave speed. Wave speed increases with the number of neighbours mimicked or repeated from and the distance to them. It decreases with reaction time and with time to identify the escape manoeuvre of others and is not affected by flock size. Our findings can be used as predictions for empirical studies

    Modelling non-attentional visual information transmission in groups under predation

    Get PDF
    Group living is of benefit to foraging individuals by improving their survival, through passive risk dilution by sheer numbers and through increasingly more active processes, ranging from cue transmission to alarm calling. Cue transmission of information within a group cannot easily be tracked in the field, but can be studied by modelling. An unintentional visual cue can be given by a fleeing action, and when it occurs in the visual field of an individual, can by contagion incite it to flee as well, making such a cue functional in anti-predator warning. The visual field is limited not only by morphology, causing a blind angle at the back, but also by behaviour. For instance, foraging with the head down can cause an extra “blind” angle in front for cues from other individuals, changing an unobstructed frontal visual field to a split lateral shape. The questions of the present study are: how do visual fields, in terms of their size and blind angles, influence survival of individuals in a group through their effect on non-attentional reception of cues to danger among group members after attentional detection of a predator, and how can we quantify this? We use an agent-based spatially explicit model to investigate the effect of contagious fleeing after detection of predators on survival rate. This model is a bottom-up model of foraging agents in a simple environment, where only assumptions about basic competences are made. We vary the size and the shape of the visual field (lateral, with the additional frontal “blind” angle, versus a frontal continuous view), the group size, the movement probability, and the style of movement (regular movement or start-stop movement) in residential groups. We devise a measure for the transmission rate and we measure the length of the transmission chains. We find that, as expected, in a residential group, a larger visual field enhances survival rate. Moreover, a lateral field is more effective than a frontal field of the same total size because it increases the field of vision and therefore the non-attentional reception of visual cues about danger during, for instance, foraging, for all but the largest visual fields. This is demonstrated by the higher transmission rates and longer chains of transmission for lateral fields. Better transmission for lateral visual fields results in more synchronized fleeing behaviour. As long as the visual field is large enough, having a blind angle in front does not detract from sufficiently effective transmission. These findings should be taken into account in empirical studies of vigilance in groups of foraging animals

    Metingen aan betonelementen

    Get PDF

    De invloed van beenarbeid op het histaminegehalte van het bloed

    Get PDF

    Metingen aan betonelementen

    Get PDF

    Deterrence of birds with an artificial predator, the RobotFalcon

    Get PDF
    Collisions between birds and airplanes can damage aircrafts, resulting in delays and cancellation of flights, costing the international civil aviation industry more than 1.4 billion US dollars annually. Driving away birds is therefore crucial, but the effectiveness of current deterrence methods is limited. Live avian predators can be an effective deterrent, because potential prey will not habituate to them, but live predators cannot be controlled entirely. Thus, there is an urgent need for new deterrence methods. We developed the RobotFalcon, a device modelled after the peregrine falcon, and tested its effectiveness to deter flocks of corvids, gulls, starlings and lapwings. We compared its effectiveness with that of a drone, and of conventional methods routinely applied at a military airbase. The RobotFalcon scared away bird flocks from fields immediately, and these fields subsequently remained free of bird flocks for hours. The RobotFalcon outperformed the drone and the best conventional method at the airbase (distress calls). Importantly, there was no evidence that bird flocks habituated to the RobotFalcon over the course of the fieldwork. We conclude that the RobotFalcon is a practical and ethical solution to drive away bird flocks with all advantages of live predators but without their limitations
    • …
    corecore