9 research outputs found

    Terahertz-Mediated Microwave-to-Optical Transduction

    Full text link
    Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems enabling information processing with superconducting qubits and low-noise quantum networking through optical photons. Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption. We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range. Our analysis, supported by numerical simulations, shows that the two-step scheme operating with a continuous pump offers near-unity external efficiency with a multi-order noise suppression compared to direct transduction. As a result, two-step electro-optic transducers may enable quantum noise-limited interfacing of superconducting quantum processors with optical channels at MHz-scale bitrates

    Anomalous polarization-dependent transport in nanoscale double-barrier superconductor/ferromagnet/superconductor junctions

    Full text link
    We study the transport properties of nanoscale superconducting (S) devices in which two superconducting electrodes are bridged by two parallel ferromagnetic (F) wires, forming an SFFS junction with a separation between the two wires less than the superconducting coherence length. This allows crossed Andreev reflection to take place. We find that the resistance as a function of temperature exhibits behavior reminiscent of the re-entrant effect and, at low temperatures and excitation energies below the superconducting gap, the resistance corresponding to antiparallel alignment of the magnetization of the ferromagnetic wires is higher than that of parallel alignment, in contrast to the behavior expected from crossed Andreev reflection. We present a model based on spin-dependent interface scattering that explains this surprising result and demonstrates the sensitivity of the junction transport properties to interfacial parameters.Comment: 5 pages, 3 figure

    Imaging spontaneous currents in superconducting arrays of pi-junctions

    Full text link
    Superconductors separated by a thin tunneling barrier exhibit the Josephson effect that allows charge transport at zero voltage, typically with no phase shift between the superconductors in the lowest energy state. Recently, Josephson junctions with ground state phase shifts of pi proposed by theory three decades ago have been demonstrated. In superconducting loops, pi-junctions cause spontaneous circulation of persistent currents in zero magnetic field, analogous to spin-1/2 systems. Here we image the spontaneous zero-field currents in superconducting networks of temperature-controlled pi-junctions with weakly ferromagnetic barriers using a scanning SQUID microscope. We find an onset of spontaneous supercurrents at the 0-pi transition temperature of the junctions Tpi = 3 K. We image the currents in non-uniformly frustrated arrays consisting of cells with even and odd numbers of pi-junctions. Such arrays are attractive model systems for studying the exotic phases of the 2D XY-model and achieving scalable adiabatic quantum computers.Comment: Pre-referee version. Accepted to Nature Physic

    Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor

    Full text link
    We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results for the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.Comment: 14 pages, 4 figure

    Phase Coherence and Andreev Reflection in Topological Insulator Devices

    Full text link
    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system

    Robust Fabry-Perot Interference in Dual-Gated Bi₂Se₃ Devices

    Full text link
    We study Fabry-Perot interference in hybrid devices, each consisting of a mesoscopic superconducting disk deposited on the surface of a three-dimensional topological insulator. Such structures are hypothesized to contain protected zero modes known as Majorana fermions bound to vortices. The interference manifests as periodic conductance oscillations of magnitude ~ 0.1 e2 / h. These oscillations show no strong dependence on bulk carrier density or sample thickness, suggesting that they result from phase coherent transport in surface states. However, the Fabry-Perot interference can be tuned by both top and back gates, implying strong electrostatic coupling between the top and bottom surfaces of topological insulator

    Signatures of Majorana Bound States in the Diffraction Patterns of Extended Superconductor-Topological Insulator-Superconductor Josephson Junctions

    Full text link
    In an extended superconductor-topological insulator-superconductor (S-TI-S) Josephson junction in a magnetic field, localized Majorana bound states (MBS) are predicted to exist at the cores of Josephson vortices where the local phase difference across the junction is an odd-multiple of π\pi. These states contribute a supercurrent with a 4π4\pi-periodic current-phase relation (CPR) that adds to the conventional 2π2\pi-periodic sinusoidal CPR. In this work, we present a comprehensive experimental study of the critical current vs. applied magnetic field diffraction patterns of lateral Nb-Bi2_2Se3_3-Nb Josephson junctions. We compare our observations to a model of the Josephson dynamics in the S-TI-S junction system to explore what feature of MBS are, or are not, exhibited in these junctions. Consistent with the model, we find several distinct deviations from a Fraunhofer diffraction pattern that is expected for a uniform sin(ϕ)({\phi}) CPR. In particular, we observe abrupt changes in the diffraction pattern at applied magnetic fields in which the current-carrying localized MBS are expected to enter the junction, and a lifting of the odd-numbered nodes consistent with a 4π4\pi-periodic sin(ϕ/2)(\phi/2)-component in the CPR. We also see that although the even-numbered nodes often remain fully-formed, we sometimes see deviations that are consistent with quasiparticle-induced fluctuations in the parity of the MBS pairs that encodes quantum information
    corecore