19,002 research outputs found

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory

    Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional

    Full text link
    We study the structure of the constrained minimizers of the Gates-Lebowitz-Penrose free-energy functional FGLP(m){\mathcal F}_{\rm GLP}(m), non-local functional of a density field m(x)m(x), x∈TLx\in {\mathcal T}_L, a dd-dimensional torus of side length LL. At low temperatures, FGLP{\mathcal F}_{\rm GLP} is not convex, and has two distinct global minimizers, corresponding to two equilibrium states. Here we constrain the average density L^{-d}\int_{{\cal T}_L}m(x)\dd x to be a fixed value nn between the densities in the two equilibrium states, but close to the low density equilibrium value. In this case, a "droplet" of the high density phase may or may not form in a background of the low density phase, depending on the values nn and LL. We determine the critical density for droplet formation, and the nature of the droplet, as a function of nn and LL. The relation between the free energy and the large deviations functional for a particle model with long-range Kac potentials, proven in some cases, and expected to be true in general, then provides information on the structure of typical microscopic configurations of the Gibbs measure when the range of the Kac potential is large enough

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12

    Full text link
    The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the compounds were found to comprise linear-chains at inter-chain distance of approximately 10 A. The parent chain compound (x = 0), however, shows less anisotropic magnetic behavior above 2 K, although it is of substantially antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain system. A magnetic cusp gradually appears at about 100 K in T vs chi with the Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold electrically insulating in the composition range.Comment: To be published in PR

    Homothetic perfect fluid space-times

    Get PDF
    A brief summary of results on homotheties in General Relativity is given, including general information about space-times admitting an r-parameter group of homothetic transformations for r>2, as well as some specific results on perfect fluids. Attention is then focussed on inhomogeneous models, in particular on those with a homothetic group H4H_4 (acting multiply transitively) and H3H_3. A classification of all possible Lie algebra structures along with (local) coordinate expressions for the metric and homothetic vectors is then provided (irrespectively of the matter content), and some new perfect fluid solutions are given and briefly discussed.Comment: 27 pages, Latex file, Submitted to Class. Quantum Gra

    A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation

    Get PDF
    A next-generation biogeochemical model was developed to explore the impact of the native water source on microbially induced desaturation and precipitation (MIDP) via denitrification. MIDP is a non-disruptive, nature-based ground improvement technique that offers the promise of cost-effective mitigation of earthquake-induced soil liquefaction under and adjacent to existing structures. MIDP leverages native soil bacteria to reduce the potential for liquefaction triggering in the short term through biogenic gas generation (treatment completed within hours to days) and over the longer term through calcium carbonate precipitation (treatment completed in weeks to months). This next-generation biogeochemical model expands earlier modeling to consider multi-phase speciation, bacterial competition, inhibition, and precipitation. The biogeochemical model was used to explore the impact of varying treatment recipes on MIDP products and by-products in a natural seawater environment. The case study presented herein demonstrates the importance of optimizing treatment recipes to minimize unwanted by-products (e.g., H2S production) or incomplete denitrification (e.g., nitrate and nitrite accumulation).</p

    A model for the current instabilities in GaAs‐AlGaAs heterojunction

    Get PDF
    A model is proposed for the description of the current instabilities in GaAs-AlGaAs heterojunctions. It consists of three parts: the injection of electrons via the contact into the AlGaAs layer, the partial capture of these electrons in deep centers, and the change with time of the band structure. This last ingredient is crucial, since due to the increase of the total number of electrons in the AlGaAs layer the band bending decreases making real-space transfer from the AlGaAs layer to the two-dimensional electron gas possible. We have performed quasistationary simulations of the time dependence of the current. The velocities, average energies, capture rates, etc. were taken from Monte Carlo simulations. It turned out, that the parameters for the modeling of the contact, which are to a high degree unknown, play an essential role
    • 

    corecore