28,207 research outputs found

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory

    Symmetries of Bianchi I space-times

    Get PDF
    All diagonal proper Bianchi I space-times are determined which admit certain important symmetries. It is shown that for Homotheties, Conformal motions and Kinematic Self-Similarities the resulting space-times are defined explicitly in terms of a set of parameters whereas Affine Collineations, Ricci Collineations and Curvature Collineations, if they are admitted, they determine the metric modulo certain algebraic conditions. In all cases the symmetry vectors are explicitly computed. The physical and the geometrical consequences of the results are discussed and a new anisitropic fluid, physically valid solution which admits a proper conformal Killing vector, is given.Comment: 19 pages, LaTex, Accepted for publication in Journal of Mathematical Physic

    On the relative importance of excluded minors

    Get PDF
    If EE is a set of matroids, then ex(EE) denotes the set of matroids that have no minor isomorphic to a member of EE. If EE' is a subset of EE, we say that EE' is /superfluous/ if ex(EE - EE') - ex(EE) contains only finitely many 3-connected matroids. We characterize the superfluous subsets of six well-known collections of excluded minors

    The excluded minors for near-regular matroids

    Get PDF
    In unpublished work, Geelen proved that a matroid is near-regular if and only if it has no minor isomorphic to: U2,5; U3,5; the Fano plane and its dual; the non-Fano and its dual; the single-element deletion of AG(2,3), its dual, and the matroid obtained from it with a Delta-Y operation; and P8. We provide a proof of this characterization

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Topology and energy transport in networks of interacting photosynthetic complexes

    Get PDF
    We address the role of topology in the energy transport process that occurs in networks of photosynthetic complexes. We take inspiration from light harvesting networks present in purple bacteria and simulate an incoherent dissipative energy transport process on more general and abstract networks, considering both regular structures (Cayley trees and hyperbranched fractals) and randomly-generated ones. We focus on the the two primary light harvesting complexes of purple bacteria, i.e., the LH1 and LH2, and we use network-theoretical centrality measures in order to select different LH1 arrangements. We show that different choices cause significant differences in the transport efficiencies, and that for regular networks centrality measures allow to identify arrangements that ensure transport efficiencies which are better than those obtained with a random disposition of the complexes. The optimal arrangements strongly depend on the dissipative nature of the dynamics and on the topological properties of the networks considered, and depending on the latter they are achieved by using global vs. local centrality measures. For randomly-generated networks a random arrangement of the complexes already provides efficient transport, and this suggests the process is strong with respect to limited amount of control in the structure design and to the disorder inherent in the construction of randomly-assembled structures. Finally, we compare the networks considered with the real biological networks and find that the latter have in general better performances, due to their higher connectivity, but the former with optimal arrangements can mimic the real networks' behaviour for a specific range of transport parameters. These results show that the use of network-theoretical concepts can be crucial for the characterization and design of efficient artificial energy transport networks.Comment: 14 pages, 16 figures, revised versio

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771

    Full text link
    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 MM_\odot stars. Methods. We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results. The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor

    Comment on 'Non-equilibrium thermodynamics of light absorption'

    Get PDF
    A recent paper by Meszéna and Westerhoff (1999 J. Phys. A: Math. Gen. 32 301) has aimed to address what is referred to as a principal question of biological thermodynamics, the possibility of describing photosynthesis in terms of non-equilibrium thermodynamics. The issue is associated with a misrepresentation of the fundamental photophysics involved, and as a result the analysis is invalid

    Plasma density over Svalbard during the ISBJØRN campaign

    Get PDF
    International audienceIn 1997, reliable operation of the EISCAT Svalbard Radar (ESR) was achieved and a rocket launching facility at Ny Ålesund on Svalbard (79°N, 12°E) (SVALRAK) was established. On 20 November, 1977, the first instrumented payload was launched from SVALRAK. Although the payload configuration had been flown many times previously from Andøya Rocket Range on the Norwegian mainland, this presented an unprecedented in situ determination of positive ion density over Svalbard. Simultaneously, ESR measured similar density profiles but in a higher altitude regime. We have combined the ESR measurements with ionosonde data to establish a calibration and subsequently combined the ground-based and in situ determined profiles to give a composite positive ion density profile from the mesosphere to the thermosphere
    corecore