3 research outputs found

    Synthetically trained convolutional neural networks for improved tensor estimation from free-breathing cardiac DTI

    No full text
    Cardiac diffusion tensor imaging (cDTI) provides invaluable information about the state of myocardial microstructure. For further clinical dissemination, free-breathing acquisitions are desired, which however require image registration prior to tensor estimation. Due to the varying contrast and the intrinsically low signal-to-noise ratio (SNR), registration is very challenging and thus can introduce additional errors in the tensor estimation. In the work at hand it is hypothesized, that by incorporating spatial information and physiologically plausible priors into the fitting algorithm, the robustness of diffusion tensor estimation can be improved. To this end, we present a parameterized pipeline to generate synthetic data, that captures the statistics including spatial correlations of diffusion tensors and motion of the heart. The synthetic data is used to train a residual convolutional neural network (CNN) to estimate diffusion tensors from unregistered in-vivo cDTI data. Using in-silico data, the synthetically trained CNN is demonstrated to yield increased tensor estimation accuracy and precision when compared to conventional registration followed by least squares fitting. The network outputs fewer outliers especially at the myocardial borders. In-vivo feasibility using data from five healthy subjects demonstrates the utility of the synthetically trained network. The in-vivo results predicted by the synthetically trained CNN are found to be consistent with the registered least-squares estimates while showing fewer outliers and reduced noise. Even in low SNR regimes, the network results in robust tensor estimation, enabling scan time reduction by reduced-average acquisition in-vivo. Finally, to investigate the network's capability of discriminating between healthy and lesioned tissue, the in-vivo data was artificially augmented showing preserved classification of tissue states based on diffusion metrics.ISSN:0895-611

    Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction

    No full text
    Background We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. Methods CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. Results Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes ( 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17–18%/T2 10–20%). Conclusion During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.ISSN:1097-6647ISSN:1532-429
    corecore