138 research outputs found

    Effect of ageing and chemical form on the bioavailability and toxicity of Pb to the survival and reproduction of the soil invertebrate Enchytraeus crypticus

    Get PDF
    This study investigated the effect of ageing on the bioavailability and toxicity of lead nitrate (Pb(NO 3 ) 2 ) and lead oxide (PbO) to Enchytraeus crypticus in LUFA 2.2 natural soil. The potworms were exposed after 2 weeks pre-incubation and after ageing the spiked soils for 3, 6, 12 and 18 months. Survival and reproduction after 21 d exposure were related to total, 0.01 M CaCl 2 -extractable and porewater Pb concentrations in the soil and internal Pb concentrations in the surviving animals. Pb concentration in pore water showed little change during ageing for Pb(NO 3 ) 2 but increased strongly for PbO-spiked soils. During ageing, toxicity of Pb(NO 3 ) 2 did not change with LC50s and EC50s for the effect on enchytraeid survival and reproduction based on total soil Pb concentrations being constant at 523–619 and 89.8–99.4 mg Pb/kg dry soil, respectively. Toxicity of PbO, however, increased with LC50s and EC50s decreasing from 4830 to 1889 mg Pb/kg dry soil and from 151 to 97.5 mg Pb/kg dry soil, respectively. When related to internal Pb concentrations LC50s did not differ for both Pb forms at different ageing periods and were 73.4–78.7 mg Pb/kg dry body wt. Survival was better explained from internal Pb concentrations in the worms than from total or available Pb concentrations in the soil. Reproduction toxicity (EC50s) and Pb uptake in the worms however, were better explained from 0.01 M CaCl 2 -extractable Pb concentrations in the soil. The latter finding could provide a scientific basis for the ecological risk assessment of contaminated soils and the derivation of soil quality standards based on extractable concentrations

    The effect of major cations on the toxicity of cadmium to Folsomia candida in a sand-solution medium analyzed by biotic ligand modeling

    Get PDF
    The aim of this study was to assess the effect of major cations (Ca2+, Mg2+, Na+, K+, and H+) on cadmium toxicity to the springtail Folsomia candida. Survival of the animals was determined after seven days exposure to different cadmium concentrations in an inert sand-solution medium, in different experimental setups with modification of the cation concentrations. Among the cations tested, Ca2+ and Mg2+ had protective effects on the toxicity of cadmium to the springtails while Na+, K+, and H+ showed less competition with free cadmium ions for binding to the uptake sites of the collembolans. Toxicity predicted with a biotic ligand model agreed well with the observed values. Calculated conditional binding constants and the fraction of biotic ligands occupied by cadmium to show 50% effects were similar to values reported in the literature. The results emphasize the important role of solution chemistry in determining metal toxicity to soil invertebrates

    Interaction between nickel and cobalt toxicity in Enchytraeus crypticus is due to competitive uptake

    Get PDF
    Uptake and toxicity of Ni-Co mixtures in Enchytraeus crypticus were determined after 4 d, 7 d, 10 d, and 14 d exposure. Generally, body concentrations of Ni and Co increased with increasing exposure concentrations. Ni body concentration was significantly reduced in the presence of Co, whereas Ni only marginally affected Co uptake. When expressed as free ion activities, individual toxicity of Ni and Co increased with time, with median lethal concentrations (LC50) decreasing from 78.3 μM and 511 μM at 4 d to 40.4 μM and 393 μM at 14 d, respectively. When expressed as body concentrations, LC50BodyNi remained constant with time whereas LC50BodyCo increased during the first 7 d but remained stable afterwards. As identified by the MIXTOX model, interactions between Ni and Co were mainly antagonistic when based on free ion activities, however, no interaction was observed when based on body concentrations. A process-based model, incorporating exposure time to analyze the mechanisms underlying the dynamic mixture toxicity confirmed the differences in toxicokinetics of the 2 metals. The author's findings suggest that body concentrations, which incorporate bioaccumulation processes, are time-independent and can act as a more constant indicator of metal toxicity. The observed antagonism was mainly caused by competition between Co and Ni for binding sites and subsequent inhibition of Ni uptake. This competitive interaction occurred at the uptake level (toxicokinetics), but not at the target level (toxicodynamics)

    Effect of soil properties on Pb bioavailability and toxicity to the soil invertebrate Enchytraeus crypticus

    Get PDF
    The present study investigated the bioavailability and toxicity of lead to the potworm Enchytraeus crypticus in six soils with different properties. Pb partitioning between the soil solution and solid phase was affected by soil organic matter (OM) content, cation exchange capacity (CEC) and water holding capacity (WHC). After 21 d exposure, Pb bioaccumulation in the enchytraeids was positively correlated with total soil Pb concentration. Bioaccumulation was best predicted by Pb availability (CaCl2-extractable and porewater Pb concentrations), and by the Ca concentration in pore water and the CEC of the soils. Toxicity varied greatly among soils, with LC50s and EC50reproductions based on total Pb concentrations ranging from 246 to >3092 and from 81 to 1008 mg Pb/kg dry soil, respectively. The variation in LC50s among soils was explained by differences in CaCl2-extractable Pb concentrations in soil and internal Pb concentrations in the animals. The differences in EC50reproductions could be explained from the CaCl2-extractable Pb concentrations in the soils. Although it was also correlated with CEC and porewater Ca concentration, pHCaCl2 was the dominating factor for predicting Pb toxicity based on total soil concentrations. This study demonstrates that soil properties, such as pH, CEC and Ca concentration in pore water, significantly affected the bioavailability and toxicity of Pb and therefore should be taken into account when assessing the ecological risk of metals in contaminated soils

    The effect of the earthworm Lumbricus rubellus on the bioavailability of cadmium and lead to the springtail Folsomia candida in metal-polluted field soils

    Get PDF
    The bioavailability of metals can be influenced not only by soil properties but also by other species living at polluted sites. However, in laboratory experiments, usually only one test species is used to estimate bioavailability. In this study, a two-species approach was applied to assess the impact of the earthworm Lumbricus rubellus on the bioavailability of cadmium and lead to the springtail Folsomia candida using natural soils from a gradient of metal pollution. Earthworms were kept in half of the soil replicates for 4 weeks. Subsequently, the uptake and elimination kinetics of cadmium and lead in F. candida exposed for 21 days to the soils was determined. Earthworm activity affected soil properties but did not significantly affect metal uptake rate constants in springtails. The slightly higher uptake due to the presence of earthworms, which was consistent in all tested soils and for both metals, suggests that further research is needed on the role of species interactions in affecting metal bioavailability in soil

    Toxicokinetics of copper and cadmium in the soil model Enchytraeus crypticus (Oligochaeta)

    Get PDF
    Toxicokinetics information is key to understanding the underlying intoxication processes, although this is often lacking. Hence, in the present study the toxicokinetics of copper (Cu) and cadmium (Cd) was assessed in the soil invertebrate Enchytraeus crypticus. The animals were exposed in LUFA 2.2 natural soil spiked to the estimated EC20 for reproduction effects in the Enchytraeid Reproduction Test (ERT), i.e. 80 mg Cu/kg soil Dry Weight (DW) and 20 mg Cd/kg soil DW. Tests followed the OECD guideline 317, including a 14-day uptake phase in spiked soil followed by 14 days elimination in clean soil, with samplings at days 0, 1, 2, 4, 7, 10, and 14. Exposure to Cu showed fast uptake, reaching a steady state after approx. 7 days, whereas for Cd, internal concentration increased and did not reach a clear steady state even after 14 days. When transferred to clean soil, Cu was rapidly eliminated returning to initial levels, while Cd-exposed animals still contained increased residue levels after 14 days. These differences in toxicokinetics have consequences for the toxicity and toxicodynamics and are indicative of the way essential and non-essential elements are handled by enchytraeids, likely also other soil invertebrates. This argues for the relevancy of longer exposure testing for elements like Cd compared to Cu, where phenotypical effects can well occur later at non-tested periods, e.g. after the 21 days’ duration of the standard ERT using E. crypticus

    Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea

    Get PDF
    Understanding how wastewater treatment plants (WWTPs) process microplastics (MPs) will help informing management practices to reduce MP emissions to the environment. We show that composite 24 h samples taken at three replications from the outflow of the grit chamber, primary settling tank and clarifier of the WWTP of Sari City, on the southern coast of the Caspian Sea, contained 12667 ± 668, 3514 ± 543 and 423 ± 44.9 MP/m3, respectively. Fibers accounted for 94.9%, 89.9% and 77.5% of the total number of MPs, respectively. The MP removal efficiency was 96.7%. MP shape (fiber, particle), size and structure were the most important factors determining their removal in different steps of the wastewater treatment process. The structure of microfibers (polyester, acrylic and nylon) and the consequent higher density than water explained their high removal (72.3%) in the primary settling tank. However, size was more important in microparticle removal with particles ≥500 μm being removed in the primary settling tank and <500 μm in the clarifier unit. The smallest particles (37–300 μm) showed the lowest removal efficiency. The predominant types of fibers and particles were polyester and polyethylene, respectively, which are likely to originate from the washing of synthetic textiles and from microbeads in toothpaste and cosmetics. Despite the efficiency of the Sari WWTP in removing MPs, it remains a major emission source of MPs to the Caspian Sea due to its high daily discharge load

    Protective effect of N-acetylcysteine on the toxicity of silver nanoparticles:Bioavailability and toxicokinetics in Enchytraeus crypticus

    Get PDF
    We previously demonstrated that N-acetylcysteine (NAC) could reduce the toxicity of silver (Ag) materials (nanoparticles (NPs) and Ag nitrate) to the soil invertebrate Enchytraeus crypticus (Oligochaeta). It remains however, unclear whether the antitoxic mechanism of NAC was caused by NAC-Ag binding in the soil or inside the organisms. This study aimed at determining the bioavailability of Ag in the soil in a 21-day toxicity test as well as the Ag uptake and elimination kinetics in E. crypticus exposed to AgNPs in LUFA 2.2 standard soil amended with low (100 mg/kg dry soil) and high (600 mg/kg dry soil) NAC concentrations. The addition of NAC to the soil alleviated the toxicity of AgNPs by decreasing the internal Ag concentration of E. crypticus in a dose-dependent manner. Indeed, NAC reduced the binding of Ag to the soil, which probably was due to the formation of soluble but biologically unavailable Ag-cysteine complexes. The reduced Ag uptake in the enchytraeids was explained from an increased elimination at high NAC levels. These findings reinforce the view that metal complexing-compounds like NAC play a key role in the modulation of AgNP toxicity and bioavailability in terrestrial environments. Further, it may inform on the potential of NAC as a remediation solution for Ag or other metal-contaminated soils

    Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus

    Get PDF
    There is still no consensus over the specific effects of metal-based nanoparticles when compared with the conventional metal salts. Here, the accumulation and toxicity of ZnO-NPs and ZnCl2 in Enchytraeus crypticus over time (1–14 d) were investigated using a sand-solution exposure medium and applying a toxicokinetics and toxicodynamics approach. For both Zn forms, body Zn concentration in the organisms was dependent on both the exposure concentration and exposure time, with equilibrium being reached after 7–14 days of exposure. Generally, the uptake and elimination rate constants (Ku and Ke1) were smaller for ZnO-NPs (5.74–12.6 mg kg−1d−1 and 0.17–0.39 d−1) than for ZnCl2 (8.32–40.1 mg kg−1d−1 and 0.31–2.05 d−1), suggesting that ionic Zn was more accessible for E. crypticus than nanoparticulate Zn. Based on external exposure concentrations, LC50s for ZnO-NPs and ZnCl2 decreased with time from 123 to 67 Zn mg L−1 and from 86 to 62 Zn mg L−1, reaching an almost similar ultimate value within 14 d. LC50s based on body Zn concentrations were almost constant over time (except for 1 d) for both ZnO-NPs and ZnCl2, with overall LC50body of Zn being 1720 and 1306 mg kg−1 dry body weight, respectively. Body Zn concentration, which considers all available pathways, was a good predictor of dynamic toxicity of ZnCl2, but not for ZnO-NPs. This may be attributed to the specific internal distribution and detoxification mechanisms of ZnO-NPs. The particles from ZnO-NPs dominated the accumulation (>75%) and toxicity (∼100%). Our results suggest that dynamic aspects should be taken into account when assessing and comparing NPs and metals uptake and consequent patterns of toxicity
    • …
    corecore