3 research outputs found

    Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the Rapid Detection of Respiratory Pathogens Including SARS-CoV-2

    Get PDF
    Point-of-care syndromic panels allow for simultaneous and rapid detection of respiratory pathogens from nasopharyngeal swabs. The clinical performance of the QIAstat-Dx Respiratory SARS-CoV-2 panel RP2.0 (QIAstat-Dx RP2.0) and the BioFire FilmArray Respiratory panel RP2.1 (BioFire RP2.1) was evaluated for the detection of SARS-CoV-2 and other common respiratory pathogens. A total of 137 patient samples were retrospectively selected based on emergency department admission, along with 33 SARS-CoV-2 positive samples tested using a WHO laboratory developed test. The limit of detection for SARS-CoV-2 was initially evaluated for both platforms. The QIAstat-Dx RP2.0 detected SARS-CoV-2 at 500 copies/mL and had a positive percent agreement (PPA) of 85%. The BioFire RP2.1 detected SARS-CoV-2 at 50 copies/mL and had a PPA of 97%. Both platforms showed a negative percent agreement of 100% for SARS-CoV-2. Evaluation of analytical specificity from a range of common respiratory targets showed a similar performance between each platform. The QIAstat-Dx RP2.0 had an overall PPA of 82% (67–100%) in clinical samples, with differences in sensitivity depending on the respiratory target. Both platforms can be used to detect acute cases of SARS-CoV-2. While the QIAstat-Dx RP2.0 is suitable for detecting respiratory viruses within a clinical range, it has less analytical and clinical sensitivity for SARS-CoV-2 compared to the BioFire RP2.1

    A discussion of syndromic molecular testing for clinical care

    Get PDF
    Current molecular detection methods for single or multiplex pathogens by real-time PCR generally offer great sensitivity and specificity. However, many infectious pathogens often result in very similar clinical presentations, complicating the test-order for physicians who have to narrow down the causative agent prior to in-house PCR testing. As a consequence, the intuitive response is to start empirical therapy to treat a broad spectrum of possible pathogens. Syndromic molecular testing has been increasingly integrated into routine clinical care, either to provide diagnostic, epidemiological or patient management information. These multiplex panels can be used to screen for predefined infectious disease pathogens simultaneously within a 1 h timeframe, creating opportunities for rapid diagnostics. Conversely, syndromic panels have their own challenges and must be adaptable to the evolving demands of the clinical setting. Firstly, questions have been raised regarding the clinical relevance of some of the targets included in the panels and secondly, there is the added expense of integration into the clinical laboratory. Here, we aim to discuss some of the factors that should be considered before performing syndromic testing rather than traditional low-plex in-house PCR

    Interdependence of diagnostics and epidemiology, a European perspective Position paper on the need for an intrinsic cooperation and data sharing: Position paper on the need for an intrinsic cooperation and data sharing

    Get PDF
    For some well-known pathogens like influenza or RSV, diagnostic and epidemiological data is available and continuously complement each other. For most other pathogens however, data is not always available or severely delayed. Furthermore, clinical data is needed to assess the burden of disease, which will enhance awareness and help to gain knowledge on emerging pathogens. In this position paper, we discuss the interdependence of diagnostics and epidemiology from a European perspective. In 2004, the European Centre for Disease Prevention and Control (ECDC) was founded to coordinate European wide surveillance and control. At present however, the ECDC still relies on university hospitals, public health institutions and other diagnostic institutions. Close collaboration between all stakeholders across Europe is therefore complex, but necessary to optimize the system for the individual patient. From the diagnostic side, data on detected pathogens should be shared with relevant health institutions in real-time. From the public health side, collected information should be made accessible for diagnostic and clinical institutions in real-time. Subsequently, this information needs to be disseminated across relevant medical disciplines to reach its full potential
    corecore