4 research outputs found

    Exploring Porcine Precision-Cut Kidney Slices as a Model for Transplant-Related Ischemia-Reperfusion Injury

    Get PDF
    Marginal donor kidneys are more likely to develop ischemia-reperfusion injury (IRI), resulting in inferior long-term outcomes. Perfusion techniques are used to attenuate IRI and improve graft quality. However, machine perfusion is still in its infancy, and more research is required for optimal conditions and potential repairing therapies. Experimental machine perfusion using porcine kidneys is a great way to investigate transplant-related IRI, but these experiments are costly and time-consuming. Therefore, an intermediate model to study IRI would be of great value. We developed a precision-cut kidney slice (PCKS) model that resembles ischemia-reperfusion and provides opportunities for studying multiple interventions simultaneously. Porcine kidneys were procured from a local slaughterhouse, exposed to 30 min of warm ischemia, and cold preserved. Subsequently, PCKS were prepared and incubated under various conditions. Adenosine triphosphate (ATP) levels and histological tissue integrity were assessed for renal viability and injury. Slicing did not influence tissue viability, and PCKS remained viable up to 72 h incubation with significantly increased ATP levels. Hypothermic and normothermic incubation led to significantly higher ATP levels than baseline. William’s medium E supplemented with Ciprofloxacin (and Amphotericin-B) provided the most beneficial condition for incubation of porcine PCKS. The porcine PCKS model can be used for studying transplant IR

    The Effects of 6-Chromanol SUL-138 during Hypothermic Machine Perfusion on Porcine Deceased Donor Kidneys

    Get PDF
    Diminishing ischemia-reperfusion injury (IRI) by improving kidney preservation techniques offers great beneficial value for kidney transplant recipients. Mitochondria play an important role in the pathogenesis of IRI and are therefore interesting targets for pharmacological interventions. Hypothermic machine perfusion (HMP), as a preservation strategy, offers the possibility to provide mitochondrial–targeted therapies. This study focuses on the addition of a mitochondrial protective agent SUL—138 during HMP and assesses its effect on kidney function and injury during normothermic reperfusion. In this case, 30 min of warm ischemia was applied to porcine slaughterhouse kidneys before 24 h of non–oxygenated HMP with or without the addition of SUL—138. Functional assessment was performed by 4 h normothermic autologous blood reperfusion. No differences in renal function or perfusion parameters were found between both groups. ATP levels were lower after 30 min of warm ischemia in the SUL–138 group (n.s, p = 0.067) but restored significantly during 24 h of HMP in combination with SUL—138. Aspartate aminotransferase (ASAT) levels were significantly lower for the SUL—138 group. SUL—138 does not influence renal function in this model. Restoration of ATP levels during 24 h of HMP with the addition of SUL in combination with lower ASAT levels could be an indication of improved mitochondrial function

    Loss of Endothelial Glycocalyx During Normothermic Machine Perfusion of Porcine Kidneys Irrespective of Pressure and Hematocrit

    Get PDF
    BACKGROUND: Normothermic machine perfusion (NMP) is a promising modality for marginal donor kidneys. However, little is known about the effects of NMP on causing endothelial glycocalyx (eGC) injury. This study aims to evaluate the effects of NMP on eGC injury in marginal donor kidneys and whether this is affected by perfusion pressures and hematocrits.METHODS: Porcine slaughterhouse kidneys (n = 6/group) underwent 35 min of warm ischemia. Thereafter, the kidneys were preserved with oxygenated hypothermic machine perfusion for 3 h. Subsequently, 4 h of NMP was applied using pressure-controlled perfusion with an autologous blood-based solution containing either 12%, 24%, or 36% hematocrit. Pressures of 55, 75, and 95 mm Hg were applied in the 24% group. Perfusate, urine, and biopsy samples were collected to determine both injury and functional parameters.RESULTS: During NMP, hyaluronan levels in the perfusate increased significantly ( P &lt; 0.0001). In addition, the positivity of glyco-stained glycocalyx decreased significantly over time, both in the glomeruli ( P = 0.024) and peritubular capillaries ( P = 0.003). The number of endothelial cells did not change during NMP ( P = 0.157), whereas glomerular endothelial expression of vascular endothelial growth factor receptor-2 decreased significantly ( P &lt; 0.001). Microthrombi formation was significantly increased after NMP. The use of different pressures and hematocrits did not affect functional parameters during perfusion. CONCLUSIONS: NMP is accompanied with eGC and vascular endothelial growth factor receptor-2 loss, without significant loss of endothelial cells. eGC loss was not affected by the different pressures and hematocrits used. It remains unclear whether endothelial injury during NMP has harmful consequences for the transplanted kidney.</p

    The Effects of 6-Chromanol SUL-138 during Hypothermic Machine Perfusion on Porcine Deceased Donor Kidneys

    No full text
    Diminishing ischemia-reperfusion injury (IRI) by improving kidney preservation techniques offers great beneficial value for kidney transplant recipients. Mitochondria play an important role in the pathogenesis of IRI and are therefore interesting targets for pharmacological interventions. Hypothermic machine perfusion (HMP), as a preservation strategy, offers the possibility to provide mitochondrial–targeted therapies. This study focuses on the addition of a mitochondrial protective agent SUL—138 during HMP and assesses its effect on kidney function and injury during normothermic reperfusion. In this case, 30 min of warm ischemia was applied to porcine slaughterhouse kidneys before 24 h of non–oxygenated HMP with or without the addition of SUL—138. Functional assessment was performed by 4 h normothermic autologous blood reperfusion. No differences in renal function or perfusion parameters were found between both groups. ATP levels were lower after 30 min of warm ischemia in the SUL–138 group (n.s, p = 0.067) but restored significantly during 24 h of HMP in combination with SUL—138. Aspartate aminotransferase (ASAT) levels were significantly lower for the SUL—138 group. SUL—138 does not influence renal function in this model. Restoration of ATP levels during 24 h of HMP with the addition of SUL in combination with lower ASAT levels could be an indication of improved mitochondrial function
    corecore