3 research outputs found

    Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tract

    Get PDF
    Background: Low skeletal muscle mass is associated with poor postoperative outcomes in cancer patients. Furthermore, it is associated with increased healthcare costs in the United States. We investigated its effect on hospital expenditure in a Western-European healthcare system, with universal access. Methods: Skeletal muscle mass (assessed on CT) and costs were obtained for patients who underwent curative-intent abdominal cancer surgery. Low skeletal muscle mass was defined based on pre-established cut-offs. The relationship between low skeletal muscle mass and hospital costs was assessed using linear regression analysis and Mann-Whitney U-tests. Results: 452 patients were included (median age 65, 61.5% males). Patients underwent surgery for colorectal cancer (38.9%), colorectal liver metastases (27.4%), primary liver tumours (23.2%), and pancreatic/periampullary cancer (10.4%). In total, 45.6% had sarcopenia. Median costs were €2,183 higher in patients with low compared with patients with high skeletal muscle mass (€17,144 versus €14,961; P<0.001). Hospital costs incrementally increased with lower sex-specific skeletal muscle mass quartiles (P = 0.029). After adjustment for confounders, low skeletal muscle mass was associated with a cost increase of €4,061 (P = 0.015). Conclusion: Low skeletal muscle mass was independently associated with increased hospital costs of about €4,000 per patient. Strategies to reduce skeletal muscle wasting could reduce hospital costs in an era of incremental healthcare costs and an increasingly ageing population

    Conditional Survival After Resection for Pancreatic Cancer: A Population-Based Study and Prediction Model

    Get PDF
    Background: Conditional survival is the survival probability after already surviving a predefined time period. This may be informative during follow-up, especially when adjusted for tumor characteristics. Such prediction models for patients with resected pancreatic cancer are lacking and therefore conditional survival was assessed and a nomogram predicting 5-year survival at a predefined period after resection of pancreatic cancer was developed. Methods: This population-based study included patients with resected pancreatic ductal adenocarcinoma from the Netherlands Cancer Registry (2005–2016). Conditional survival was calculated as the median, and the probability of surviving up to 8 years in patients who already survived 0–5 years after resection was calculated using the Kaplan–Meier method. A prediction model was constructed. Results: Overall, 3082 patients were included, with a median age of 67 years. Median overall survival was 18 months (95% confidence interval 17–18 months), with a 5-year survival of 15%. The 1-year conditional survival (i.e. probability of surviving the next year) increased from 55 to 74 to 86% at 1, 3, and 5 years after surgery, respectively, while the median overall survival increased from 15 to 40 to 64 months at 1, 3, and 5 years after surgery, respectively. The prediction model demonstrated that the probability of achieving 5-year survival at 1 year after surgery varied from 1 to 58% depending on patient and tumor characteristics. Conclusions: This population-based study showed that 1-year conditional survival was 55% 1 year after resection and 74% 3 years after resection in patients with pancreatic cancer. The prediction model is available via www.pancreascalculator.com to inform patients and caregivers

    Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tract

    Get PDF
    Background: Low skeletal muscle mass is associated with poor postoperative outcomes in cancer patients. Furthermore, it is associated with increased healthcare costs in the United States. We investigated its effect on hospital expenditure in a Western-European healthcare system, with universal access. Methods: Skeletal muscle mass (assessed on CT) and costs were obtained for patients who underwent curative-intent abdominal cancer surgery. Low skeletal muscle mass was defined based on pre-established cut-offs. The relationship between low skeletal muscle mass and hospital costs was assessed using linear regression analysis and Mann-Whitney U-tests. Results: 452 patients were included (median age 65, 61.5% males). Patients underwent surgery for colorectal cancer (38.9%), colorectal liver metastases (27.4%), primary liver tumours (23.2%), and pancreatic/periampullary cancer (10.4%). In total, 45.6% had sarcopenia. Median costs were €2,183 higher in patients with low compared with patients with high skeletal muscle mass (€17,144 versus €14,961; P<0.001). Hospital costs incrementally increased with lower sex-specific skeletal muscle mass quartiles (P = 0.029). After adjustment for confounders, low skeletal muscle mass was associated with a cost increase of €4,061 (P = 0.015). Conclusion: Low skeletal muscle mass was independently associated with increased hospital costs of about €4,000 per patient. Strategies to reduce skeletal muscle wasting could reduce hospital costs in an era of incremental healthcare costs and an increasingly ageing population
    corecore