19 research outputs found

    Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau

    Get PDF
    Autopsy data indicate that the locus coeruleus (LC) is one of the first sites in the brain to accumulate hyperphosphorylated tau pathology, with the rostral part possibly being more vulnerable in the earlier stages of the disease. Taking advantage of recent developments in ultra-high field (7 T) imaging, we investigated whether imaging measures of the LC also reveal a specific anatomic correlation with tau using novel plasma biomarkers of different species of hyperphosphorylated tau, how early in adulthood these associations can be detected and if are associated with worse cognitive performance. To validate the anatomic correlations, we tested if a rostro-caudal gradient in tau pathology is also detected at autopsy in data from the Rush Memory and Aging Project (MAP). We found that higher plasma measures of phosphorylated tau, in particular ptau231, correlated negatively with dorso-rostral LC integrity, whereas correlations for neurodegenerative plasma markers (neurofilament light, total tau) were scattered throughout the LC including middle to caudal sections. In contrast, the plasma Aβ42/40 ratio, associated with brain amyloidosis, did not correlate with LC integrity. These findings were specific to the rostral LC and not observed when using the entire LC or the hippocampus. Furthermore, in the MAP data, we observed higher rostral than caudal tangle density in the LC, independent of the disease stage. The in vivo LC-phosphorylated tau correlations became significant from midlife, with the earliest effect for ptau231, starting at about age 55. Finally, interactions between lower rostral LC integrity and higher ptau231 concentrations predicted lower cognitive performance. Together, these findings demonstrate a specific rostral vulnerability to early phosphorylated tau species that can be detected with dedicated magnetic resonance imaging measures, highlighting the promise of LC imaging as an early marker of AD-related processes

    Sparse Asymmetry in Locus Coeruleus Pathology in Alzheimer's Disease.

    Full text link
    peer reviewed Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration

    Early brainstem [18F]THK5351 uptake is linked to cortical hyper-excitability in healthy aging

    Get PDF
    BACKGROUND: Neuronal hyper-excitability characterizes the early stages of Alzheimer's disease (AD). In animals, early misfolded tau and amyloid-beta (Aβ) protein accumulation, both central to AD neuropathology, promote cortical excitability and neuronal network dysfunction. In healthy humans, misfolded tau and Aβ aggregates are first detected, respectively, in the brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD cognitive symptoms. Whether cortical excitability is related to early brainstem tau, and its associated neuroinflammation, and cortical Aβ aggregations remains unknown. METHODS: We probed frontal cortex excitability, using transcranial magnetic stimulation combined with electroencephalography, in a sample of 64 healthy late middle-aged individuals (50-69 y; 45 women). We assessed whole-brain [18F]THK5351 positron emission tomography (PET) uptake as a proxy measure of tau/neuroinflammation, and whole-brain Aβ burden with [18F]Flutemetamol or [18F]Florbetapir radiotracers. RESULTS: We find that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment is associated with increased cortical excitability (r = .29, p = .02). By contrast, [18F]THK5351 PET signal in the hippocampal formation, although strongly correlated with brainstem signal in whole-brain voxel-based quantification analyses (pFWE-corrected < .001), was not significantly associated with cortical excitability (r = .14, p = .25). Importantly, no significant association was found between early Aβ cortical deposits and cortical excitability (r = -.20, p = .11). CONCLUSION: These findings reveal potential brain substrates for increased cortical excitability in preclinical AD and may constitute functional in vivo correlates of early brainstem tau accumulation and neuroinflammation in humans. TRIAL REGISTRATION: EudraCT 2016-001436-35. FUNDING: F.R.S.-FNRS Belgium, Wallonie-Bruxelles International, ULiège, Fondation Simone et Pierre Clerdent, European Regional Development Fund

    Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART

    Get PDF
    The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies

    Associations between locus coeruleus integrity and nocturnal awakenings in the context of Alzheimer's disease plasma biomarkers: a 7T MRI study

    No full text
    BACKGROUND: The brainstem locus coeruleus (LC) constitutes the intersection of the initial pathophysiological processes of Alzheimer’s disease (AD) and sleep-wake dysregulation in the preclinical stages of the disease. However, the interplay between in vivo assessment of LC degeneration and AD-related sleep alterations remains unknown. Here, we sought to investigate whether MRI-assessed LC structural integrity relates to subjective sleep-wake measures in the context of AD plasma biomarkers, in cognitively unimpaired older individuals. METHODS: Seventy-two cognitively unimpaired older individuals aged 50–85 years (mean age = 65.2 ± 8.2 years, 37 women, 21 APOE ε4 carriers) underwent high-resolution imaging of the LC at 7 Tesla, and LC structural integrity was quantified using a data-driven approach. Reports on habitual sleep quality and nocturnal awakenings were collected using sleep questionnaires. Plasma levels of total tau, p-tau(181), Aβ(40), and Aβ(42) were measured using single-molecule array technology. RESULTS: Intensity-based cluster analyses indicated two distinct LC segments, with one covering the middle-to-caudal LC and displaying lower intensity compared to the middle-to-rostral cluster (t(70) = −5.12, p < 0.0001). After correction for age, sex, depression, and APOE status, lower MRI signal intensity within the middle-to-caudal LC was associated with a higher number of self-reported nocturnal awakenings (F(1,63) = 6.73, p(FDR) = 0.03). Furthermore, this association was mostly evident in individuals with elevated levels of total tau in the plasma (F(1,61) = 4.26, p = 0.04). CONCLUSION: Our findings provide in vivo evidence that worse LC structural integrity is associated with more frequent nocturnal awakenings in the context of neurodegeneration, in cognitively unimpaired older individuals. These results support the critical role of the LC for sleep-wake regulation in the preclinical stages of AD and hold promises for the identification of at-risk populations for preventive interventions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-021-00902-8

    Elevated Norepinephrine Metabolism Gauges Alzheimer's Disease-Related Pathology and Memory Decline

    No full text
    The noradrenergic (NE) locus coeruleus (LC) is vulnerable to hyperphosphorylated tau, and dysregulated NE-metabolism is linked to greater tau and disease progression. We investigated whether elevated NE-metabolism alone predicts memory decline or whether concomitant presence of tau and amyloid-beta is required. Among 114 memory clinic participants, time trends (max. six years) showed dose-response declines in learning across groups with elevated NE-metabolite 3-methoxy4-hydroxyphenylethyleneglycol (MHPG) with no, one, or two Alzheimer's disease biomarkers; and no decline in the low MHPG group. Elevated MHPG is required and sufficient to detect learning declines, supporting a pathophysiologic model including the LC-NE system contributing to initial Alzheimer's disease-related processes

    State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities

    No full text
    Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS

    Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau

    No full text
    Autopsy data indicate that the locus coeruleus (LC) is one of the first sites in the brain to accumulate hyperphosphorylated tau pathology, with the rostral part possibly being more vulnerable in the earlier stages of the disease. Taking advantage of recent developments in ultra-high field (7 T) imaging, we investigated whether imaging measures of the LC also reveal a specific anatomic correlation with tau using novel plasma biomarkers of different species of hyperphosphorylated tau, how early in adulthood these associations can be detected and if are associated with worse cognitive performance. To validate the anatomic correlations, we tested if a rostro-caudal gradient in tau pathology is also detected at autopsy in data from the Rush Memory and Aging Project (MAP). We found that higher plasma measures of phosphorylated tau, in particular ptau(231), correlated negatively with dorso-rostral LC integrity, whereas correlations for neurodegenerative plasma markers (neurofilament light, total tau) were scattered throughout the LC including middle to caudal sections. In contrast, the plasma A beta(42/40) ratio, associated with brain amyloidosis, did not correlate with LC integrity. These findings were specific to the rostral LC and not observed when using the entire LC or the hippocampus. Furthermore, in the MAP data, we observed higher rostral than caudal tangle density in the LC, independent of the disease stage. The in vivo LC-phosphorylated tau correlations became significant from midlife, with the earliest effect for ptau(231), starting at about age 55. Finally, interactions between lower rostral LC integrity and higher ptau(231) concentrations predicted lower cognitive performance. Together, these findings demonstrate a specific rostral vulnerability to early phosphorylated tau species that can be detected with dedicated magnetic resonance imaging measures, highlighting the promise of LC imaging as an early marker of AD-related processes
    corecore