952 research outputs found

    The properties of Low Surface Brightness galaxies

    Get PDF
    A description is given of the samples of Low Surface Brightness galaxies (LSBs) used for comparison with models of their chemical and spectro-photometric evolution (Boissier et al., this Volume). These samples show the large variation and scatter in observed global properties of LSBs, some of which cannot be modeled without adding starbursts or truncations to their star formation history.Comment: To appear in the Proceedings of the Euroconference on The Evolution of Galaxies: III. From simple approaches to self-consistent models (Kluwer). 4 page

    Monte Carlo simulations of ordering in ferromagnetic-antiferromagnetic bilayers

    Full text link
    Monte Carlo simulations have been used to study phase transitions on coupled anisotropic ferro/antiferromagnetic (FM/AFM) films of classical Heisenberg spins. We consider films of different thicknesses, with fully compensated exchange across the FM/AFM interface. We find indications of a phase transition on each film, occuring at different temperatures. It appears that both transition temperatures depend on the film thickness.Comment: Revtex, 4 pages, 4 figure

    Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states

    Get PDF
    We studied the rate of spontaneous emission from colloidal CdSe and CdTe nanocrystals at room temperature. The decay rate, obtained from luminescence decay curves, increases with the emission frequency in a supra-linear way. This dependence is explained by the thermal occupation of dark exciton states at room temperature, giving rise to a strong attenuation of the rate of emission. The supra-linear dependence is in agreement with the results of tight-binding calculations.Comment: 11 page

    Parallel Evolution of Quasi-separatrix Layers and Active Region Upflows

    Get PDF
    Persistent plasma upflows were observed with Hinode's EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern which is present in the AR for several days. We propose a scenario in which upflows are observed provided a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and for as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs, in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support to the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but it is also responsible for a continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nan\c{c}ay Radio Heliograph.Comment: 29 pages, 10 figure

    How Can Active Region Plasma Escape into the Solar Wind from below a Closed Helmet Streamer?

    Get PDF
    Recent studies show that active-region (AR) upflowing plasma, observed by the EUV-Imaging Spectrometer (EIS), onboard Hinode, can gain access to open field-lines and be released into the solar wind (SW) via magnetic-interchange reconnection at magnetic null-points in pseudo-streamer configurations. When only one bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, such as AR 10978 in December 2007, it seems unlikely that the upflowing AR plasma can find its way into the slow SW. However, signatures of plasma with AR composition have been found at 1 AU by Culhane et al. (2014) apparently originating from the West of AR 10978. We present a detailed topology analysis of AR 10978 and the surrounding large-scale corona based on a potential-field source-surface (PFSS) model. Our study shows that it is possible for the AR plasma to get around the streamer separatrix and be released into the SW via magnetic reconnection, occurring in at least two main steps. We analyse data from the Nan\c{c}ay Radioheliograph (NRH) searching for evidence of the chain of magnetic reconnections proposed. We find a noise storm above the AR and several varying sources at 150.9 MHz. Their locations suggest that they could be associated with particles accelerated during the first-step reconnection process and at a null point well outside of the AR. However, we find no evidence of the second-step reconnection in the radio data. Our results demonstrate that even when it appears highly improbable for the AR plasma to reach the SW, indirect channels involving a sequence of reconnections can make it possible.Comment: 26 pages, 10 figures. appears in Solar Physics, 201

    Design, fabrication, and characterization of deep-etched waveguide gratings

    Get PDF
    One-dimensional (1-D) deep-etched gratings on a specially grown AlGaAs wafer were designed and fabricated. The gratings were fabricated using state-of-the-art electron beam lithography and high-aspect-ratio reactive ion etching (RIE) in order to achieve the required narrow deep air slots with good accuracy and reproducibility. Since remarkable etch depths (up to 1.5 /spl mu/m), which completely cut through the waveguide core layer, have been attained, gratings composed of only five periods (and, thus, shorter than 6 /spl mu/m) have a bandgap larger than 100 nm. A defect was introduced by increasing the width of the central semiconductor tooth to create microcavities that exhibit a narrow transmission peak (less than 7 nm) around the wavelength of 1530 nm. The transmission spectra between 1460 and 1580 nm have been systematically measured, and the losses have been estimated for a set of gratings, both with and without a defect, for different periods and air slot dimensions. Numerical results obtained via a bidirectional beam propagation code allowed the evaluation of transmissivity, reflectivity, and diffraction losses. By comparing experimental results with the authors' numerical findings, a clear picture of the role of the grating's geometric parameters in determining its spectral features and diffractive losses is illustrated

    Generation of spin currents via Raman scattering

    Full text link
    We show theoretically that stimulated spin flip Raman scattering can be used to inject spin currents in doped semiconductors with spin split bands. A pure spin current, where oppositely oriented spins move in opposite directions, can be injected in zincblende crystals and structures. The calculated spin current should be detectable by pump-probe optical spectroscopy and anomalous Hall effect measurement

    The Contribution of HI-Rich Galaxies to the Damped Absorber Population at z=0

    Full text link
    We present a study of HI-rich galaxies in the local universe selected from blind emission-line surveys. These galaxies represent the emission-line counterparts of local damped Lyman-alpha systems. We find that the HI cross-section of galaxies is drawn from a large range of galaxy masses below M_star, 66% of the area comes from galaxies in the range 8.5 < Log M_star < 9.7. Both because of the low mass galaxy contribution, and because of the range of galaxy types and luminosities at any given HI mass, the galaxies contributing to the HI cross-section are not exclusively L_star spirals, as is often expected. The optical and near infrared counterparts of these galaxies cover a range of types (from spirals to irregulars), luminosities (from L_star to <0.01 L_star), and surface brightnesses. The range of optical and near infrared properties as well as the kinematics for this population are consistent with the properties for the low-z damped Lyman-alpha absorbers. We also show that the number of HI-rich galaxies in the local universe does not preclude evolution of the low-z damped absorber population, but it is consistent with no evolution.Comment: 10 pages, 7 figures. To appear in "Extragalactic Gas at Low Redshift" (ASP Conf. Series, Weymann Conf.
    corecore