501 research outputs found
Molecule-by-Molecule Writing Using a Focused Electron Beam
The resolution of lithography techniques needs to be extended beyond their current limits to continue the trend of miniaturization and enable new applications. But what is the ultimate spatial resolution? It is known that single atoms can be imaged with a highly focused electron beam. Can single atoms also be written with an electron beam? We verify this with focused electron-beam-induced deposition (FEBID), a direct-write technique that has the current record for the smallest feature written by (electron) optical lithography. We show that the deposition of an organometallic precursor on graphene can be followed molecule-by-molecule with FEBID. The results show that mechanisms that are inherent to the process inhibit a further increase in control over the process. Hence, our results present the resolution limit of (electron) optical lithography techniques. The writing of isolated, subnanometer features with nanometer precision can be used, for instance, for the local modification of graphene and for catalysis.</p
Numerical methods and hypoexponential approximations for gamma distributed delay differential equations
Gamma distributed delay differential equations (DDEs) arise naturally in many modelling applications. However, appropriate numerical methods for generic gamma distributed DDEs have not previously been implemented. Modellers have therefore resorted to approximating the gamma distribution with an Erlang distribution and using the linear chain technique to derive an equivalent system of ordinary differential equations (ODEs). In this work, we address the lack of appropriate numerical tools for gamma distributed DDEs in two ways. First, we develop a functional continuous RungeāKutta (FCRK) method to numerically integrate the gamma distributed DDE without resorting to Erlang approximation. We prove the fourth-order convergence of the FCRK method and perform numerical tests to demonstrate the accuracy of the new numerical method. Nevertheless, FCRK methods for infinite delay DDEs are not widely available in existing scientific software packages. As an alternative approach to solving gamma distributed DDEs, we also derive a hypoexponential approximation of the gamma distributed DDE. This hypoexponential approach is a more accurate approximation of the true gamma distributed DDE than the common Erlang approximation but, like the Erlang approximation, can be formulated as a system of ODEs and solved numerically using standard ODE software. Using our FCRK method to provide reference solutions, we show that the common Erlang approximation may produce solutions that are qualitatively different from the underlying gamma distributed DDE. However, the proposed hypoexponential approximations do not have this limitation. Finally, we apply our hypoexponential approximations to perform statistical inference on synthetic epidemiological data to illustrate the utility of the hypoexponential approximation
Regioselectivity of Epoxide Ring-Openings via S(N)2 Reactions Under Basic and Acidic Conditions
We have quantum chemically analyzed the ring-opening reaction of the model non-symmetrical epoxide 2,2-dimethyloxirane under basic and acidic conditions using density functional theory at OLYP/TZ2P. For the first time, our combined activation strain and Kohn-Sham molecular orbital analysis approach have revealed the interplay of physical factors that control the regioselectivity of these chemical reactions. Ring-opening under basic conditions occurs in a regime of strong interaction between the nucleophile (OH-) and the epoxide and the interaction is governed by the steric (Pauli) repulsion. The latter steers the attack preferentially towards the sterically less encumbered C-beta. Under acidic conditions, the interaction between the nucleophile (H2O) and the epoxide is weak and, now, the regioselectivity is governed by the activation strain. Protonation of the epoxide induces elongation of the weaker (CH3)(2)C-alpha-O bond, and effectively predistorts the substrate for the attack at the sterically more hindered side, which goes with a less destabilizing overall strain energy. Our quantitative analysis significantly builds on the widely accepted rationales behind the regioselectivity of these ring-opening reactions and provide a concrete framework for understanding these indispensable textbook reactions.Bio-organic Synthesi
Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains
L. v. D., L. P. S., X. D., H. W. and F. B. acknowledge financial support from the Newton Trust UKāChina NSFC initiative (grants MR/P007597/1 and 81661138006). F. B. acknowledges support from the BBSRC GCRF scheme. H. W. additionally acknowledges support from China NSFC grant 81625014. H. C. acknowledges financial support from a 111 Talent Discipline Planning of PKUPH award for a 1-year visit at University College London. Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Nine supplementary tables and fifteen supplementary figures are available with the online version of this article.Peer reviewedPublisher PD
SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals
SARS-CoV-2 has a zoonotic origin and was transmitted to humans via an undetermined intermediate host, leading to infections in humans and other mammals. To enter host cells, the viral spike protein (S-protein) binds to its receptor, ACE2, and is then processed by TMPRSS2. Whilst receptor binding contributes to the viral host range, S-protein:ACE2 complexes from other animals have not been investigated widely. To predict infection risks, we modelled S-protein:ACE2 complexes from 215 vertebrate species, calculated changes in the energy of the complex caused by mutations in each species, relative to human ACE2, and correlated these changes with COVID-19 infection data. We also analysed structural interactions to better understand the key residues contributing to affinity. We predict that mutations are more detrimental in ACE2 than TMPRSS2. Finally, we demonstrate phylogenetically that human SARS-CoV-2 strains have been isolated in animals. Our results suggest that SARS-CoV-2 can infect a broad range of mammals, but few fish, birds or reptiles. Susceptible animals could serve as reservoirs of the virus, necessitating careful ongoing animal management and surveillance
The global distribution and spread of the mobilized colistin resistance gene mcr-1.
Colistin represents one of the few available drugs for treating infections caused by carbapenem-resistant Enterobacteriaceae. As such, the recent plasmid-mediated spread of the colistin resistance gene mcr-1 poses a significant public health threat, requiring global monitoring and surveillance. Here, we characterize the global distribution of mcr-1 using a data set of 457 mcr-1-positive sequenced isolates. We find mcr-1 in various plasmid types but identify an immediate background common to all mcr-1 sequences. Our analyses establish that all mcr-1 elements in circulation descend from the same initial mobilization of mcr-1 by an ISApl1 transposon in the mid 2000s (2002-2008; 95% highest posterior density), followed by a marked demographic expansion, which led to its current global distribution. Our results provide the first systematic phylogenetic analysis of the origin and spread of mcr-1, and emphasize the importance of understanding the movement of antibiotic resistance genes across multiple levels of genomic organization
- ā¦