85 research outputs found

    Phospholipase Cδ regulates germination of Dictyostelium spores

    Get PDF
    BACKGROUND: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC is essential to sense the environment of food-activated spores. RESULTS: Plc-null spores germinate at alkaline pH, reduced temperature or increased osmolarity, conditions at which the emerging amoebae can not grow. In contrast, food-activated wild-type spores return to dormancy till conditions in the environment allow growth. The analysis of inositol 1,4,5-trisphosphate (IP(3)) levels and the effect of added IP(3) uncover an unexpected mechanism how PLC regulates spore germination: i) deletion of PLC induces the enhanced activity of an IP(5) phosphatase leading to high IP(3) levels in plc-null cells; ii) in wild-type spores unfavourable conditions inhibit PLC leading to a reduction of IP(3) levels; addition of exogenous IP(3) to wild-type spores induces germination at unfavourable conditions; iii) in plc-null spores IP(3) levels remain high, also at unfavourable environmental conditions. CONCLUSIONS: The results imply that environmental conditions regulate PLC activity and that IP(3) induces spore germination; the uncontrolled germination of plc-null spores is not due to a lack of PLC activity but to the constitutive activation of an alternative IP(3)-forming pathway

    Prognostic value of 11C-methionine volume-based PET parameters in IDH wild type glioblastoma

    Get PDF
    PURPOSE: (11)C-Methionine ((11)C-MET) PET prognostication of isocitrate dehydrogenase (IDH) wild type glioblastomas is inadequate as conventional parameters such as standardized uptake value (SUV) do not adequately reflect tumor heterogeneity. We retrospectively evaluated whether volume-based parameters such as metabolic tumor volume (MTV) and total lesion methionine metabolism (TLMM) outperformed SUV for survival correlation in patients with IDH wild type glioblastomas. METHODS: Thirteen IDH wild type glioblastoma patients underwent preoperative (11)C-MET PET. Both SUV-based parameters and volume-based parameters were calculated for each lesion. Kaplan-Meier curves with log-rank testing and Cox regression analysis were used for correlation between PET parameters and overall survival. RESULTS: Median overall survival for the entire cohort was 393 days. MTV (HR 1.136, p = 0.007) and TLMM (HR 1.022, p = 0.030) were inversely correlated with overall survival. SUV-based (11)C-MET PET parameters did not show a correlation with survival. In a paired analysis with other clinical parameters including age and radiotherapy dose, MTV and TLMM were found to be independent factors. CONCLUSIONS: MTV and TLMM, and not SUV, significantly correlate with overall survival in patients with IDH wild type glioblastomas. The incorporation of volume-based (11)C-MET PET parameters may lead to a better outcome prediction for this heterogeneous patient population

    Influence of MRI Follow-Up on Treatment Decisions during Standard Concomitant and Adjuvant Chemotherapy in Patients with Glioblastoma:Is Less More?

    Get PDF
    MRI is the gold standard for treatment response assessments for glioblastoma. However, there is no consensus regarding the optimal interval for MRI follow-up during standard treatment. Moreover, a reliable assessment of treatment response is hindered by the occurrence of pseudoprogression. It is unknown if a radiological follow-up strategy at 2-3 month intervals actually benefits patients and how it influences clinical decision making about the continuation or discontinuation of treatment. This study assessed the consequences of scheduled follow-up scans post-chemoradiotherapy (post-CCRT), after three cycles of adjuvant chemotherapy [TMZ3/6], and after the completion of treatment [TMZ6/6]), and of unscheduled scans on treatment decisions during standard concomitant and adjuvant treatment in glioblastoma patients. Additionally, we evaluated how often follow-up scans resulted in diagnostic uncertainty (tumor progression versus pseudoprogression), and whether perfusion MRI improved clinical decision making. Scheduled follow-up scans during standard treatment in glioblastoma patients rarely resulted in an early termination of treatment (2.3% post-CCRT, 3.2% TMZ3/6, and 7.8% TMZ6/6), but introduced diagnostic uncertainty in 27.7% of cases. Unscheduled scans resulted in more major treatment consequences (30%; p &lt; 0.001). Perfusion MRI caused less diagnostic uncertainty ( p = 0.021) but did not influence treatment consequences ( p = 0.871). This study does not support the current pragmatic follow-up strategy and suggests a more tailored follow-up approach. </p

    Diagnostic accuracy of positron emission tomography tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma:a systematic review and meta-analysis

    Get PDF
    Background: Post-treatment high-grade gliomas are usually monitored with contrast-enhanced MRI, but its diagnostic accuracy is limited as it cannot adequately distinguish between true tumor progression and treatment-related changes. According to recent response assessment in neuro-oncology (RANO) recommendations PET overcomes this limitation. However, it is currently unknown which tracer yields the best results. Therefore, a systematic review and meta-analysis were performed to compare the diagnostic accuracy of the different PET tracers in differentiating tumor progression from treatment-related changes in high-grade glioma patients. Methods: Pubmed, Web of Science and Embase were searched systematically. Study selection, data extraction and quality assessment were performed independently by two authors. Meta-analysis was performed using a bivariate random effects model when ≥ 5 studies were included. Results: 39 studies (11 tracers) were included in the systematic review. 18F-FDG (12 studies, 171 lesions) showed a pooled sensitivity and specificity of 84% (95%CI 72-92) and 84% (69-93), respectively. 18F-FET (7 studies, 172 lesions) demonstrated a sensitivity of 90% (81-95) and specificity of 85% (71-93). 11C-MET (8 studies, 151 lesions) sensitivity was 93% (80-98) and specificity was 82% (68-91). The number of included studies for the other tracers were too low to combine, but sensitivity and specificity ranged between 93-100% and 0-100% for 18F-FLT, 85-100% and 72-100% for 18F-FDOPA and 100% and 70-88% for 11C-CHO, respectively. Conclusion:18F-FET and 11C-MET, both amino-acid tracers, showed a comparable higher sensitivity than 18F-FDG in the differentiation between tumor progression and treatment-related changes in high-grade glioma patients. The evidence for other tracers is limited, thus 18F-FET and 11C-MET are preferred when available. Our results support the incorporation of amino-acid PET tracers for the treatment evaluation of high-grade gliomas

    Influence of elastically pinned magnetic domain walls on magnetization reversal in multiferroic heterostructures

    Get PDF
    In elastically coupled multiferroic heterostructures that exhibit full domain correlations between ferroelectricand ferromagnetic subsystems, magnetic domain walls are firmly pinned on top of ferroelectric domainboundaries. In this work, we investigate the influence of pinned magnetic domain walls on the magnetizationreversal process in a Co40Fe40B20 wedge film that is coupled to a ferroelectric BaTiO3 substrate via interfacestrain transfer.We show that the magnetic field direction can be used to select between two distinct magnetizationreversal mechanisms, namely, (1) double switching events involving alternate stripe domains at a time or(2) synchronized switching of all domains. Furthermore, scaling of the switching fields with domain widthand film thickness is also found to depend on the field orientation. These results are explained by considering the dissimilar energies of the two types of pinned magnetic domain walls that are formed in the system.Peer reviewe

    Electronic and magnetic characterization of epitaxial CrBr3_3 monolayers

    Full text link
    The ability to imprint a given material property to another through proximity effect in layered two-dimensional materials has opened the way to the creation of designer materials. Here, we use molecular-beam epitaxy (MBE) for a direct synthesis of a superconductor-magnet hybrid heterostructure by combining superconducting niobium diselenide (NbSe2_2) with the monolayer ferromagnetic chromium tribromide (CrBr3_3). Using different characterization techniques and density-functional theory (DFT) calculations, we have confirmed that the CrBr3_3 monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favoring an out-of-plane spin orientation. Low-temperature scanning tunneling microscopy (STM) measurements show a slight reduction of the superconducting gap of NbSe2_2 and the formation of a vortex lattice on the CrBr3_3 layer in experiments under an external magnetic field. Our results contribute to the broader framework of exploiting proximity effects to realize novel phenomena in 2D heterostructures

    The Correlation of In Vivo MR Spectroscopy and Ex Vivo 2-Hydroxyglutarate Concentration for the Prediction of Isocitrate Dehydrogenase Mutation Status in Diffuse Glioma

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation status is an important biomarker in the glioma-defining subtype and corresponding prognosis. This study proposes a straightforward method for 2-hydroxyglutarate (2-HG) quantification by MR spectroscopy for IDH mutation status detection and directly compares in vivo 2-HG MR spectroscopy with ex vivo 2-HG concentration measured in resected tumor tissue. Eleven patients with suspected lower-grade glioma (ten IDH1; one IDHwt) were prospectively included. Preoperatively, 3T point-resolved spectroscopy (PRESS) was acquired; 2-HG was measured as the percentage elevation of Glx3 (the sum of 2-HG and Glx) compared to Glx4. IDH mutation status was assessed by immunochemistry or direct sequencing. The ex vivo 2-HG concentration was determined in surgically obtained tissue specimens using gas chromatography-mass spectrometry. Pearson correlation was used for assessing the correlation between in vivo MR spectroscopy and ex vivo 2-HG concentration. MR spectroscopy was positive for 2-HG in eight patients, all of whom had IDH1 tumors. A strong correlation (r = 0.80, p = 0.003) between 2-HG MR spectroscopy and the ex vivo 2-HG concentration was found. This study shows in vivo 2-HG MR spectroscopy can non-invasively determine IDH status in glioma and demonstrates a strong correlation with ex vivo 2-HG concentration in patients with lower-grade glioma. </p

    The Correlation of In Vivo MR Spectroscopy and Ex Vivo 2-Hydroxyglutarate Concentration for the Prediction of Isocitrate Dehydrogenase Mutation Status in Diffuse Glioma

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation status is an important biomarker in the glioma-defining subtype and corresponding prognosis. This study proposes a straightforward method for 2-hydroxyglutarate (2-HG) quantification by MR spectroscopy for IDH mutation status detection and directly compares in vivo 2-HG MR spectroscopy with ex vivo 2-HG concentration measured in resected tumor tissue. Eleven patients with suspected lower-grade glioma (ten IDH1; one IDHwt) were prospectively included. Preoperatively, 3T point-resolved spectroscopy (PRESS) was acquired; 2-HG was measured as the percentage elevation of Glx3 (the sum of 2-HG and Glx) compared to Glx4. IDH mutation status was assessed by immunochemistry or direct sequencing. The ex vivo 2-HG concentration was determined in surgically obtained tissue specimens using gas chromatography-mass spectrometry. Pearson correlation was used for assessing the correlation between in vivo MR spectroscopy and ex vivo 2-HG concentration. MR spectroscopy was positive for 2-HG in eight patients, all of whom had IDH1 tumors. A strong correlation (r = 0.80, p = 0.003) between 2-HG MR spectroscopy and the ex vivo 2-HG concentration was found. This study shows in vivo 2-HG MR spectroscopy can non-invasively determine IDH status in glioma and demonstrates a strong correlation with ex vivo 2-HG concentration in patients with lower-grade glioma. </p

    The Correlation of In Vivo MR Spectroscopy and Ex Vivo 2-Hydroxyglutarate Concentration for the Prediction of Isocitrate Dehydrogenase Mutation Status in Diffuse Glioma

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation status is an important biomarker in the glioma-defining subtype and corresponding prognosis. This study proposes a straightforward method for 2-hydroxyglutarate (2-HG) quantification by MR spectroscopy for IDH mutation status detection and directly compares in vivo 2-HG MR spectroscopy with ex vivo 2-HG concentration measured in resected tumor tissue. Eleven patients with suspected lower-grade glioma (ten IDH1; one IDHwt) were prospectively included. Preoperatively, 3T point-resolved spectroscopy (PRESS) was acquired; 2-HG was measured as the percentage elevation of Glx3 (the sum of 2-HG and Glx) compared to Glx4. IDH mutation status was assessed by immunochemistry or direct sequencing. The ex vivo 2-HG concentration was determined in surgically obtained tissue specimens using gas chromatography-mass spectrometry. Pearson correlation was used for assessing the correlation between in vivo MR spectroscopy and ex vivo 2-HG concentration. MR spectroscopy was positive for 2-HG in eight patients, all of whom had IDH1 tumors. A strong correlation (r = 0.80, p = 0.003) between 2-HG MR spectroscopy and the ex vivo 2-HG concentration was found. This study shows in vivo 2-HG MR spectroscopy can non-invasively determine IDH status in glioma and demonstrates a strong correlation with ex vivo 2-HG concentration in patients with lower-grade glioma. </p
    • …
    corecore