33 research outputs found

    Interobserver variability in target definition for stereotactic arrhythmia radioablation

    Get PDF
    BACKGROUND: Stereotactic arrhythmia radioablation (STAR) is a potential new therapy for patients with refractory ventricular tachycardia (VT). The arrhythmogenic substrate (target) is synthesized from clinical and electro-anatomical information. This study was designed to evaluate the baseline interobserver variability in target delineation for STAR. METHODS: Delineation software designed for research purposes was used. The study was split into three phases. Firstly, electrophysiologists delineated a well-defined structure in three patients (spinal canal). Secondly, observers delineated the VT-target in three patients based on case descriptions. To evaluate baseline performance, a basic workflow approach was used, no advanced techniques were allowed. Thirdly, observers delineated three predefined segments from the 17-segment model. Interobserver variability was evaluated by assessing volumes, variation in distance to the median volume expressed by the root-mean-square of the standard deviation (RMS-SD) over the target volume, and the Dice-coefficient. RESULTS: Ten electrophysiologists completed the study. For the first phase interobserver variability was low as indicated by low variation in distance to the median volume (RMS-SD range: 0.02-0.02 cm) and high Dice-coefficients (mean: 0.97 ± 0.01). In the second phase distance to the median volume was large (RMS-SD range: 0.52-1.02 cm) and the Dice-coefficients low (mean: 0.40 ± 0.15). In the third phase, similar results were observed (RMS-SD range: 0.51-1.55 cm, Dice-coefficient mean: 0.31 ± 0.21). CONCLUSIONS: Interobserver variability is high for manual delineation of the VT-target and ventricular segments. This evaluation of the baseline observer variation shows that there is a need for methods and tools to improve variability and allows for future comparison of interventions aiming to reduce observer variation, for STAR but possibly also for catheter ablation

    Outcomes in Dutch DPP6 risk haplotype for familial idiopathic ventricular fibrillation:a focused update

    Get PDF
    Background: The genetic risk haplotype DPP6 has been linked to familial idiopathic ventricular fibrillation (IVF), but the associated long-term outcomes are unknown. Methods: DPP6 risk haplotype-positive family members (DPP6 cases) and their risk haplotype-negative relatives (DPP6 controls) were included. Clinical follow-up data were collected through March 2023. Implantable cardioverter-defibrillator (ICD) indication was divided in primary or secondary prevention. Cumulative survival and event rates were calculated. Results: We included 327 DPP6 cases and 315 DPP6 controls. Median follow-up time was 9 years (interquartile range: 4–12). Of the DPP6 cases, 129 (39%) reached the composite endpoint of appropriate ICD shock, sudden cardiac arrest or death, at a median age of 45 years (range: 15–97). Median overall survival was 83 years and 87 years for DPP6 cases and DPP6 controls, respectively (p &lt; 0.001). In DPP6 cases, median overall survival was shorter for males (74 years) than females (85 years) (p &lt; 0.001). Of the DPP6 cases, 97 (30%) died, at a median age of 50 years. With a prophylactic ICD implantation advise based on risk haplotype, sex and age, 137 (42%) of DPP6 cases received an ICD, for primary prevention (n = 109) or secondary prevention (n = 28). In the primary prevention subgroup, 10 patients experienced a total of 34 appropriate ICD shocks, and there were no deaths during follow-up. DPP6 cases with a secondary prevention ICD experienced a total of 231 appropriate ICD shocks.Conclusion: Patients with the DPP6 risk haplotype, particularly males, are at an increased risk of IVF and sudden cardiac death. Using a risk stratification approach based on risk haplotype, sex and age, a substantial proportion of patients with a primary prevention ICD experienced appropriate ICD shocks, showing the benefit of prophylactic ICD implantation with this strategy.</p

    Left axis deviation in brugada syndrome: Vectorcardiographic evaluation during ajmaline provocation testing reveals additional depolarization abnormalities

    Get PDF
    Patients with Brugada syndrome (BrS) can show a leftward deviation of the frontal QRS-axis upon provocation with sodium channel blockers. The cause of this axis change is unclear. In this study, we aimed to determine (1) the prevalence of this left axis deviation and (2) to evaluate its cause, using the insights that could be derived from vectorcardiograms. Hence, from a large cohort of patients who underwent ajmaline provocation testing (n = 1430), we selected patients in whom a type-1 BrS-ECG was evoked (n = 345). Depolarization and repolarization parameters were analyzed for reconstructed vectorcardiograms and were compared between patients with and without a >30◦ leftward axis shift. We found (1) that the prevalence of a left axis deviation during provocation testing was 18% and (2) that this left axis deviation was not explained by terminal conduction slowing in the right ventricular outflow tract (4th QRS-loop quartile: +17 ± 14 ms versus +13 ± 15 ms, nonsignificant) but was associated with a more proximal conduction slowing (1st QRS-loop quartile: +12[8;18] ms versus +8[4;12] ms, p < 0.001 and 3rd QRS-loop quartile: +12 ± 10 ms versus +5 ± 7 ms, p < 0.001). There was no important heterogeneity of the action potential morphology (no difference in the ventricular gradient), but a left axis deviation did result in a dis

    Interobserver variability in target definition for stereotactic arrhythmia radioablation

    Get PDF
    BackgroundStereotactic arrhythmia radioablation (STAR) is a potential new therapy for patients with refractory ventricular tachycardia (VT). The arrhythmogenic substrate (target) is synthesized from clinical and electro-anatomical information. This study was designed to evaluate the baseline interobserver variability in target delineation for STAR.MethodsDelineation software designed for research purposes was used. The study was split into three phases. Firstly, electrophysiologists delineated a well-defined structure in three patients (spinal canal). Secondly, observers delineated the VT-target in three patients based on case descriptions. To evaluate baseline performance, a basic workflow approach was used, no advanced techniques were allowed. Thirdly, observers delineated three predefined segments from the 17-segment model. Interobserver variability was evaluated by assessing volumes, variation in distance to the median volume expressed by the root-mean-square of the standard deviation (RMS-SD) over the target volume, and the Dice-coefficient.ResultsTen electrophysiologists completed the study. For the first phase interobserver variability was low as indicated by low variation in distance to the median volume (RMS-SD range: 0.02–0.02 cm) and high Dice-coefficients (mean: 0.97 ± 0.01). In the second phase distance to the median volume was large (RMS-SD range: 0.52–1.02 cm) and the Dice-coefficients low (mean: 0.40 ± 0.15). In the third phase, similar results were observed (RMS-SD range: 0.51–1.55 cm, Dice-coefficient mean: 0.31 ± 0.21).ConclusionsInterobserver variability is high for manual delineation of the VT-target and ventricular segments. This evaluation of the baseline observer variation shows that there is a need for methods and tools to improve variability and allows for future comparison of interventions aiming to reduce observer variation, for STAR but possibly also for catheter ablation

    The genetic basis of apparently idiopathic ventricular fibrillation:A retrospective overview

    Get PDF
    Aims: During the diagnostic work-up of patients with idiopathic ventricular fibrillation (VF), next-generation sequencing panels can be considered to identify genotypes associated with arrhythmias. However, consensus for gene panel testing is still lacking, and variants of uncertain significance (VUS) are often identified. The aim of this study was to evaluate genetic testing and its results in idiopathic VF patients. Methods and results: We investigated 419 patients with available medical records from the Dutch Idiopathic VF Registry. Genetic testing was performed in 379 (91%) patients [median age at event 39 years (27-51), 60% male]. Single-gene testing was performed in 87 patients (23%) and was initiated more often in patients with idiopathic VF before 2010. Panel testing was performed in 292 patients (77%). The majority of causal (likely) pathogenic variants (LP/P, n = 56, 15%) entailed the DPP6 risk haplotype (n = 39, 70%). Moreover, 10 LP/P variants were found in cardiomyopathy genes (FLNC, MYL2, MYH7, PLN (two), TTN (four), RBM20), and 7 LP/P variants were identified in genes associated with cardiac arrhythmias (KCNQ1, SCN5A (2), RYR2 (four)). For eight patients (2%), identification of an LP/P variant resulted in a change of diagnosis. In 113 patients (30%), a VUS was identified. Broad panel testing resulted in a higher incidence of VUS in comparison to single-gene testing (38% vs. 3%, P &lt; 0.001). Conclusion: Almost all patients from the registry underwent, albeit not broad, genetic testing. The genetic yield of causal LP/P variants in idiopathic VF patients is 5%, increasing to 15% when including DPP6. In specific cases, the LP/P variant is the underlying diagnosis. A gene panel specifically for idiopathic VF patients is proposed.</p

    The genetic basis of apparently idiopathic ventricular fibrillation:A retrospective overview

    Get PDF
    Aims: During the diagnostic work-up of patients with idiopathic ventricular fibrillation (VF), next-generation sequencing panels can be considered to identify genotypes associated with arrhythmias. However, consensus for gene panel testing is still lacking, and variants of uncertain significance (VUS) are often identified. The aim of this study was to evaluate genetic testing and its results in idiopathic VF patients. Methods and results: We investigated 419 patients with available medical records from the Dutch Idiopathic VF Registry. Genetic testing was performed in 379 (91%) patients [median age at event 39 years (27-51), 60% male]. Single-gene testing was performed in 87 patients (23%) and was initiated more often in patients with idiopathic VF before 2010. Panel testing was performed in 292 patients (77%). The majority of causal (likely) pathogenic variants (LP/P, n = 56, 15%) entailed the DPP6 risk haplotype (n = 39, 70%). Moreover, 10 LP/P variants were found in cardiomyopathy genes (FLNC, MYL2, MYH7, PLN (two), TTN (four), RBM20), and 7 LP/P variants were identified in genes associated with cardiac arrhythmias (KCNQ1, SCN5A (2), RYR2 (four)). For eight patients (2%), identification of an LP/P variant resulted in a change of diagnosis. In 113 patients (30%), a VUS was identified. Broad panel testing resulted in a higher incidence of VUS in comparison to single-gene testing (38% vs. 3%, P &lt; 0.001). Conclusion: Almost all patients from the registry underwent, albeit not broad, genetic testing. The genetic yield of causal LP/P variants in idiopathic VF patients is 5%, increasing to 15% when including DPP6. In specific cases, the LP/P variant is the underlying diagnosis. A gene panel specifically for idiopathic VF patients is proposed.</p

    Second intravenous immunoglobulin dose in patients with Guillain-Barre syndrome with poor prognosis (SID-GBS):a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background Treatment with one standard dose (2 g/kg) of intravenous immunoglobulin is insufficient in a proportion of patients with severe Guillain-Barre syndrome. Worldwide, around 25% of patients severely affected with the syndrome are given a second intravenous immunoglobulin dose (SID), although it has not been proven effective. We aimed to investigate whether a SID is effective in patients with Guillain-Barre syndrome with a predicted poor outcome. Methods In this randomised, double-blind, placebo-controlled trial (SID-GBS), we included patients (>= 12 years) with Guillain-Barre syndrome admitted to one of 59 participating hospitals in the Netherlands. Patients were included on the first day of standard intravenous immunoglobulin treatment (2 g/kg over 5 days). Only patients with a poor prognosis (score of >= 6) according to the modified Erasmus Guillain-Barre syndrome Outcome Score were randomly assigned, via block randomisation stratified by centre, to SID (2 g/kg over 5 days) or to placebo, 7-9 days after inclusion. Patients, outcome adjudicators, monitors, and the steering committee were masked to treatment allocation. The primary outcome measure was the Guillain-Barre syndrome disability score 4 weeks after inclusion. All patients in whom allocated trial medication was started were included in the modified intention-to-treat analysis. Findings Between Feb 16, 2010, and June 5, 2018, 327 of 339 patients assessed for eligibility were included. 112 had a poor prognosis. Of those, 93 patients with a poor prognosis were included in the modified intention-to-treat analysis: 49 (53%) received SID and 44 (47%) received placebo. The adjusted common odds ratio for improvement on the Guillain-Barre syndrome disability score at 4 weeks was 1.4 (95% CI 0.6-3.3; p=0.45). Patients given SID had more serious adverse events (35% vs 16% in the first 30 days), including thromboembolic events, than those in the placebo group. Four patients died in the intervention group (13-24 weeks after randomisation). Interpretation Our study does not provide evidence that patients with Guillain-Barre syndrome with a poor prognosis benefit from a second intravenous immunoglobulin course; moreover, it entails a risk of serious adverse events. Therefore, a second intravenous immunoglobulin course should not be considered for treatment of Guillain-Barre syndrome because of a poor prognosis. The results indicate the need for treatment trials with other immune modulators in patients severely affected by Guillain-Barre syndrome. Funding Prinses Beatrix Spierfonds and Sanquin Plasma Products. Copyright (C) 2021 Elsevier Ltd. All rights reserved

    Interobserver variability in target definition for stereotactic arrhythmia radioablation

    Get PDF
    Background: Stereotactic arrhythmia radioablation (STAR) is a potential new therapy for patients with refractory ventricular tachycardia (VT). The arrhythmogenic substrate (target) is synthesized from clinical and electro-anatomical information. This study was designed to evaluate the baseline interobserver variability in target delineation for STAR. Methods: Delineation software designed for research purposes was used. The study was split into three phases. Firstly, electrophysiologists delineated a well-defined structure in three patients (spinal canal). Secondly, observers delineated the VT-target in three patients based on case descriptions. To evaluate baseline performance, a basic workflow approach was used, no advanced techniques were allowed. Thirdly, observers delineated three predefined segments from the 17-segment model. Interobserver variability was evaluated by assessing volumes, variation in distance to the median volume expressed by the root-mean-square of the standard deviation (RMS-SD) over the target volume, and the Dice-coefficient. Results: Ten electrophysiologists completed the study. For the first phase interobserver variability was low as indicated by low variation in distance to the median volume (RMS-SD range: 0.02–0.02 cm) and high Dice-coefficients (mean: 0.97 ± 0.01). In the second phase distance to the median volume was large (RMS-SD range: 0.52–1.02 cm) and the Dice-coefficients low (mean: 0.40 ± 0.15). In the third phase, similar results were observed (RMS-SD range: 0.51–1.55 cm, Dice-coefficient mean: 0.31 ± 0.21). Conclusions: Interobserver variability is high for manual delineation of the VT-target and ventricular segments. This evaluation of the baseline observer variation shows that there is a need for methods and tools to improve variability and allows for future comparison of interventions aiming to reduce observer variation, for STAR but possibly also for catheter ablation

    The Genetic Basis of Apparently Idiopathic Ventricular Fibrillation - a Retrospective Overview

    Get PDF
    Aims: During the diagnostic work-up of patients with idiopathic ventricular fibrillation (VF), next-generation sequencing panels can be considered to identify genotypes associated with arrhythmias. However, consensus for gene panel testing is still lacking, and variants of uncertain significance (VUS) are often identified. The aim of this study was to evaluate genetic testing and its results in idiopathic VF patients. Methods and results: We investigated 419 patients with available medical records from the Dutch Idiopathic VF Registry. Genetic testing was performed in 379 (91%) patients [median age at event 39 years (27-51), 60% male]. Single-gene testing was performed in 87 patients (23%) and was initiated more often in patients with idiopathic VF before 2010. Panel testing was performed in 292 patients (77%). The majority of causal (likely) pathogenic variants (LP/P, n = 56, 15%) entailed the DPP6 risk haplotype (n = 39, 70%). Moreover, 10 LP/P variants were found in cardiomyopathy genes (FLNC, MYL2, MYH7, PLN (two), TTN (four), RBM20), and 7 LP/P variants were identified in genes associated with cardiac arrhythmias (KCNQ1, SCN5A (2), RYR2 (four)). For eight patients (2%), identification of an LP/P variant resulted in a change of diagnosis. In 113 patients (30%), a VUS was identified. Broad panel testing resulted in a higher incidence of VUS in comparison to single-gene testing (38% vs. 3%, P < 0.001). Conclusion: Almost all patients from the registry underwent, albeit not broad, genetic testing. The genetic yield of causal LP/P variants in idiopathic VF patients is 5%, increasing to 15% when including DPP6. In specific cases, the LP/P variant is the underlying diagnosis. A gene panel specifically for idiopathic VF patients is proposed
    corecore