12 research outputs found
Deep reinforcement learning for cerebral anterior vessel tree extraction from 3D CTA images
Extracting the cerebral anterior vessel tree of patients with an intracranial large vessel occlusion (LVO) is relevant to investigate potential biomarkers that can contribute to treatment decision making. The purpose of our work is to develop a method that can achieve this from routinely acquired computed tomography angiography (CTA) and computed tomography perfusion (CTP) images. To this end, we regard the anterior vessel tree as a set of bifurcations and connected centerlines. The method consists of a proximal policy optimization (PPO) based deep reinforcement learning (DRL) approach for tracking centerlines, a convolutional neural network based bifurcation detector, and a breadth-first vessel tree construction approach taking the tracking and bifurcation detection results as input. We experimentally determine the added values of various components of the tracker. Both DRL vessel tracking and CNN bifurcation detection were assessed in a cross validation experiment using 115 subjects. The anterior vessel tree formation was evaluated on an independent test set of 25 subjects, and compared to interobserver variation on a small subset of images. The DRL tracking result achieves a median overlapping rate until the first error (1.8 mm off the reference standard) of 100, [46, 100] % on 8032 vessels over 115 subjects. The bifurcation detector reaches an average recall and precision of 76% and 87% respectively during the vessel tree formation process. The final vessel tree formation achieves a median recall of 68% and precision of 70%, which is in line with the interobserver agreement.ImPhys/Vos groupImPhys/Computational ImagingBiomechanical Engineerin
Spatio-temporal deep learning for automatic detection of intracranial vessel perforation in digital subtraction angiography during endovascular thrombectomy
Intracranial vessel perforation is a peri-procedural complication during endovascular therapy (EVT). Prompt recognition is important as its occurrence is strongly associated with unfavorable treatment outcomes. However, perforations can be hard to detect because they are rare, can be subtle, and the interventionalist is working under time pressure and focused on treatment of vessel occlusions. Automatic detection holds potential to improve rapid identification of intracranial vessel perforation. In this work, we present the first study on automated perforation detection and localization on X-ray digital subtraction angiography (DSA) image series. We adapt several state-of-the-art single-frame detectors and further propose temporal modules to learn the progressive dynamics of contrast extravasation. Application-tailored loss function and post-processing techniques are designed. We train and validate various automated methods using two national multi-center datasets (i.e., MR CLEAN Registry and MR CLEAN-NoIV Trial), and one international multi-trial dataset (i.e., the HERMES collaboration). With ten-fold cross-validation, the proposed methods achieve an area under the curve (AUC) of the receiver operating characteristic of 0.93 in terms of series level perforation classification. Perforation localization precision and recall reach 0.83 and 0.70 respectively. Furthermore, we demonstrate that the proposed automatic solutions perform at similar level as an expert radiologist.ImPhys/Medical ImagingImPhys/Computational Imagin
Mechanical wall stress and wall shear stress are associated with atherosclerosis development in non-calcified coronary segments
Background and aims: Atherosclerotic plaque onset and progression are known to be affected by local biomechanical factors. While the role of wall shear stress (WSS) has been studied, the impact of another biomechanical factor, namely mechanical wall stress (MWS), remains poorly understood. In this study, we investigated the association of MWS, independently and combined with WSS, towards atherosclerosis in coronary arteries. Methods: Thirty-four human coronary arteries were analyzed using near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) at baseline and after 12 months. Baseline WSS and MWS were calculated using computational models, and wall thickness (ΔWT) and lipid-rich necrotic core size (ΔLRNC) change were measured in non-calcified coronary segments. The arteries were further divided into 1.5 mm/45° sectors and categorized as plaque-free or plaque sectors. For each category, associations between biomechanical factors (WSS & MWS) and changes in coronary wall (ΔWT & ΔLRNC) were studied using linear mixed models. Results: In plaque-free sectors, higher MWS (p < 0.001) was associated with greater vessel wall growth. Plaque sectors demonstrated wall thickness reduction over time, likely due to medical therapy, where higher levels of WSS and WMS, individually and combined, (p < 0.05) were associated with a greater reduction. Sectors with low MWS combined with high WSS demonstrated the highest LRNC increase (p < 0.01). Conclusions: In this study, we investigated the association of the (largely-overlooked) biomechanical factor MWS with coronary atherosclerosis, individually and combined with WSS. Our results demonstrated that both MWS and WSS significantly correlate with atherosclerotic plaque initiation and development.Medical Instruments & Bio-Inspired Technolog
Time dependency of automated collateral scores in computed tomography angiography and computed tomography perfusion images in patients with intracranial arterial occlusion
Purpose: The assessment of collateral status may depend on the timing of image acquisition. The purpose of this study is to investigate whether there are optimal time points in CT Perfusion (CTP) for collateral status assessment, and compare collaterals scores at these time points with collateral scores from multiphase CT angiography (mCTA). Methods: Patients with an acute intracranial occlusion who underwent baseline non-contrast CT, mCTA and CT perfusion were selected. Collateral status was assessed using an automatically computed Collateral Ratio (CR) score in mCTA, and predefined time points in CTP acquisition. CRs extracted from CTP were correlated with CRs from mCTA. In addition, all CRs were related to baseline National Institutes of Health Stroke Scale (NIHSS) and Alberta Stoke Program Early CT Score (ASPECTS) with linear regression analysis to find the optimal CR. Results: In total 58 subjects (median age 74 years; interquartile range 61–83 years; 33 male) were included. When comparing the CRs from the CTP vs. mCTA acquisition, the strongest correlations were found between CR from baseline mCTA and the CR at the maximal intensity projection of time-resolved CTP (r = 0.81) and the CR at the peak of arterial enhancement point (r = 0.78). Baseline mCTA-derived CR had the highest correlation with ASPECTS (β = 0.36 (95%CI 0.11, 0.61)) and NIHSS (β = − 0.48 (95%CI − 0.72, − 0.16)). Conclusion: Collateral status assessment strongly depends on the timing of acquisition. Collateral scores obtained from mCTA imaging is close to the optimal collateral score obtained from CTP imaging.ImPhys/Medical ImagingImPhys/Computational Imagin
CAVE: Cerebral artery–vein segmentation in digital subtraction angiography
Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.Mechanical EngineeringImPhys/Vos groupImPhys/Computational ImagingBiomechanical Engineerin
Genome-wide association study of frontotemporal dementia identifies a C9ORF72 haplotype with a median of 12-G4C2 repeats that predisposes to pathological repeat expansions
Genetic factors play a major role in frontotemporal dementia (FTD). The majority of FTD cannot be genetically explained yet and it is likely that there are still FTD risk loci to be discovered. Common variants have been identified with genome-wide association studies (GWAS), but these studies have not systematically searched for rare variants. To identify rare and new common variant FTD risk loci and provide more insight into the heritability of C9ORF72-related FTD, we performed a GWAS consisting of 354 FTD patients (including and excluding N = 28 pathological repeat carriers) and 4209 control subjects. The Haplotype Reference Consortium was used as reference panel, allowing for the imputation of rare genetic variants. Two rare genetic variants nearby C9ORF72 were strongly associated with FTD in the discovery (rs147211831: OR = 4.8, P = 9.2 × 10−9, rs117204439: OR = 4.9, P = 6.0 × 10−9) and replication analysis (P < 1.1 × 10−3). These variants also significantly associated with amyotrophic lateral sclerosis in a publicly available dataset. Using haplotype analyses in 1200 individuals, we showed that these variants tag a sub-haplotype of the founder haplotype of the repeat expansion that was previously found to be present in virtually all pathological C9ORF72 G4C2 repeat lengths. This new risk haplotype was 10 times more likely to contain a C9ORF72 pathological repeat length compared to founder haplotypes without one of the two risk variants (~22% versus ~2%; P = 7.70 × 10−58). In haplotypes without a pathologic expansion, the founder risk haplotype had a higher number of repeats (median = 12 repeats) compared to the founder haplotype without the risk variants (median = 8 repeats) (P = 2.05 × 10−260). In conclusion, the identified risk haplotype, which is carried by ~4% of all individuals, is a major risk factor for pathological repeat lengths of C9ORF72 G4C2. These findings strongly indicate that longer C9ORF72 repeats are unstable and more likely to convert to germline pathological C9ORF72 repeat expansions.Pattern Recognition and BioinformaticsTechnology, Policy and Managemen
Contribution of Red Blood Cells and Platelets to Blood Clot Computed Tomography Imaging and Compressive Mechanical Characteristics
Thrombus computed tomography (CT) imaging characteristics may correspond with thrombus mechanical properties and thus predict thrombectomy success. The impact of red blood cell (RBC) content on these properties (imaging and mechanics) has been widely studied. However, the additional effect of platelets has not been considered. The objective of the current study was to examine the individual and combined effects of blood clot RBC and platelet content on resultant CT imaging and mechanical characteristics. Human blood clot analogues were prepared from a combination of preselected RBC volumes and platelet concentrations to decouple their contributions. The resulting clot RBC content (%) and platelet content (%) were determined using Martius Scarlet Blue and CD42b staining, respectively. Non-contrast and contrast-enhanced CT (NCCT and CECT) scans were performed to measure the clot densities. CECT density increase was taken as a proxy for clinical perviousness. Unconfined compressive mechanics were analysed by performing 10 cycles of 80% strain. RBC content is the major determinant of clot NCCT density. However, additional consideration of the platelet content improves the association. CECT density increase is influenced by clot platelet and not RBC content. Platelet content is the dominant component driving clot stiffness, especially at high strains. Both RBC and platelet content contribute to the clot’s viscoelastic and plastic compressive properties. The current in vitro results suggest that CT density is reflective of RBC content and subsequent clot viscoelasticity and plasticity, and that perviousness reflects the clot’s platelet content and subsequent stiffness. However, these indications should be confirmed in a clinical stroke cohort.Medical Instruments & Bio-Inspired Technolog
Morphological Subtypes of Intracranial Internal Carotid Artery Arteriosclerosis and the Risk of Stroke
Background: Accumulating evidence highlights the existence of distinct morphological subtypes of intracranial carotid arteriosclerosis. So far, little is known on the prevalence of these subtypes and subsequent stroke risk in the general population. We determined the prevalence of morphological subtypes of intracranial arteriosclerosis and assessed the risk of stroke associated with these subtypes. Methods: Between 2003 and 2006, 2391 stroke-free participants (mean age 69.6, 51.7% women) from the population-based Rotterdam Study underwent noncontrast computed tomography to visualize calcification in the intracranial carotid arteries as a proxy for intracranial arteriosclerosis. Calcification morphology was evaluated according to a validated grading scale and categorized into intimal, internal elastic lamina (IEL), or mixed subtype. Follow-up for stroke was complete until January 1, 2016. We used multivariable Cox regression to assess associations of each subtype with incident stroke. Results: The prevalence of calcification was 82% of which 39% had the intimal subtype, 48% IEL subtype, and 13% a mixed subtype. During a median follow-up of 10.4 years, 155 participants had a stroke. All 3 subtypes were associated with a higher risk of stroke (adjusted hazard ratio [95% CI] for intimal: 2.11 [1.07-4.13], IEL: 2.66 [1.39-5.11], and mixed subtype 2.57 [1.18-5.61]). The association of the IEL subtype with stroke was strongest among older participants. The association of the intimal subtype with stroke was noticeably stronger in women than in men. Conclusions: Calcification of the IEL was the most prevalent subtype of intracranial arteriosclerosis. All 3 subtypes were associated with an increased risk of stroke, with noticeable age and sex-specific differences. Medical Instruments & Bio-Inspired Technolog
Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues
Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5–80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress–strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress–strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors.Medical Instruments & Bio-Inspired Technolog
Mechanical Characterization of Thrombi Retrieved with Endovascular Thrombectomy in Patients with Acute Ischemic Stroke
Background and Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness. Methods: Forty-one thrombi from 19 patients with acute stroke who underwent EVT between July and October 2019 were mechanically analyzed, directly after EVT. We performed unconfined compression experiments and determined tangent modulus at 75% strain (Et75) as a measure for thrombus stiffness. Thrombi were histologically analyzed for fibrin/platelets, erythrocytes, leukocytes, and platelets, and we assessed the relationship between histological components and Et75with univariable and multivariable linear mixed regression. Results: Median Et75was 560 (interquartile range, 393-1161) kPa. In the multivariable analysis, fibrin/platelets were associated with increased Et75(aβ, 9 [95% CI, 5 to 13]) kPa, erythrocytes were associated with decreased Et75%(aβ,-9 [95% CI,-5 to-13]) kPa. We found no association between leukocytes and Et75. High platelet values were strongly associated with increased Et75(aβ, 56 [95% CI, 38-73]). Conclusions: Fibrin/platelet content of thrombi retrieved with EVT for acute ischemic stroke is strongly associated with increased thrombus stiffness. For thrombi with high platelet values, there was a very strong relationship with thrombus stiffness. Our data provide a basis for future research on the development of next-generation EVT devices tailored to thrombus composition.Medical Instruments & Bio-Inspired Technolog