3 research outputs found

    Characterizing data ecosystems to support official statistics with open mapping data for reporting on sustainable development goals

    No full text
    Reporting on the Sustainable Development Goals (SDGs) is complex given the wide variety of governmental and NGO actors involved in development projects as well as the increased number of targets and indicators. However, data on the wide variety of indicators must be collected regularly, in a robust manner, comparable across but also within countries and at different administrative and disaggregated levels for adequate decision making to take place. Traditional census and household survey data is not enough. The increase in Small and Big Data streams have the potential to complement official statistics. The purpose of this research is to develop and evaluate a framework to characterize a data ecosystem in a developing country in its totality and to show how this can be used to identify data, outside the official statistics realm, that enriches the reporting on SDG indicators. Our method consisted of a literature study and an interpretative case study (two workshops with 60 and 35 participants and including two questionnaires, over 20 consultations and desk research). We focused on SDG 6.1.1. (Proportion of population using safely managed drinking water services) in rural Malawi. We propose a framework with five dimensions (actors, data supply, data infrastructure, data demand and data ecosystem governance). Results showed that many governmental and NGO actors are involved in water supply projects with different funding sources and little overall governance. There is a large variety of geospatial data sharing platforms and online accessible information management systems with however a low adoption due to limited internet connectivity and low data literacy. Lots of data is still not open. All this results in an immature data ecosystem. The characterization of the data ecosystem using the framework proves useful as it unveils gaps in data at geographical level and in terms of dimensionality (attributes per water point) as well as collaboration gaps. The data supply dimension of the framework allows identification of those datasets that have the right quality and lowest cost of data extraction to enrich official statistics. Overall, our analysis of the Malawian case study illustrated the complexities involved in achieving self-regulation through interaction, feedback and networked relationships. Additional complexities, typical for developing countries, include fragmentation, divide between governmental and non-governmental data activities, complex funding relationships and a data poor context.Information and Communication Technolog

    River Flood Detection Using Passive Microwave Remote Sensing in a Data-Scarce Environment: A Case Study for Two River Basins in Malawi

    No full text
    Detecting and forecasting riverine floods is of paramount importance for adequate disaster risk management and humanitarian response. However, this is challenging in data-scarce and ungauged river basins in developing countries. Satellite remote sensing data offers a cost-effective, low-maintenance alternative to the limited in-situ data when training, parametrizing and operating flood models. Utilizing the signal difference between a measurement (M) and a dry calibration (C) location in Passive Microwave Remote Sensing (PMRS), the resulting rcm index simulates river discharge in the measurement pixel. Whilst this has been demonstrated for several river basins, it is as of yet unknown at what ratio of the spatial scales of the river width vs. the PMRS pixel resolution it remains effective in East-Africa. This study investigates whether PMRS imagery at 37 GHz can be effectively used for flood preparedness in two small-scale basins in Malawi, the Shire and North Rukuru river basins. Two indices were studied: The m index (rcm expressed as a magnitude relative to the average flow) and a new index that uses an additional wet calibration cell: rcmc. Furthermore, the results of both indices were benchmarked against discharge estimates from the Global Flood Awareness System (GloFAS). The results show that the indices have a similar seasonality as the observed discharge. For the Shire River, rcmc had a stronger correlation with discharge (ρ = 0.548) than m (ρ = 0.476), and the former predicts discharge more accurately (R2 = 0.369) than the latter (R2 = 0.245). In Karonga, the indices performed similarly. The indices do not perform well in detecting individual flood events when comparing the signal to a flood impact database. However, these results are sensitive to the threshold used and the impact database quality. The method presented simulated Shire River discharge and detected floods more accurately than GloFAS. It therefore shows potential for river monitoring in data-scarce areas, especially for rivers of a similar or larger spatial scale than the Shire River. Upstream pixels could not directly be used to forecast floods occurring downstream in these specific basins, as the time lag between discharge peaks did not provide sufficient warning time.Water Resource

    A Framework for Strengthening Data Ecosystems to Serve Humanitarian Purposes

    Get PDF
    The incidence of natural disasters worldwide is increasing. As a result, a growing number of people is in need of humanitarian support, for which limited resources are available. This requires an effective and efficient prioritization of the most vulnerable people in the preparedness phase, and the most affected people in the response phase of humanitarian action. Data-driven models havethe potential to support this prioritization process. However, the applications of these models in a country requires a certain level of data preparedness. To achieve this level of data preparedness on a large scale we need to know how to facilitate, stimulate and coordinate data-sharing between humanitarian actors. We use a data ecosystem perspective to develop success criteria for establishing a “humanitarian data ecosystem”. We first present the development of a general framework with data ecosystem governance success criteria based on a systematic literature review. Subsequently, the applicability of this framework in the humanitarian sector is assessed through a case study on the “Community Risk Assessment and Prioritization toolbox” developed by the Netherlands Red Cross. The empirical evidence led to the adaption the framework to the specific criteria that need to be addressed when aiming to establish a successful humanitarian data ecosystem.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Information and Communication TechnologyMulti Actor SystemsPolicy Analysi
    corecore