6 research outputs found

    Characterization of a Novel Fusion Protein from IpaB and IpaD of Shigella spp. and Its Potential as a Pan-Shigella Vaccine

    Get PDF
    Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion

    Protection of Mice against Brucellosis by Intranasal Immunization with Brucella melitensis Lipopolysaccharide as a Noncovalent Complex with Neisseria meningitidis Group B Outer Membrane Protein

    No full text
    Intranasal immunization of mice with purified Brucella melitensis lipopolysaccharide (LPS) as a noncovalent complex with Neisseria meningitidis group B outer membrane protein (GBOMP) elicited a high-titer anti-LPS systemic antibody response and a significant mucosal antibody response. The anti-LPS immunoglobulin G (IgG) antibody was predominantly of the IgG1 subtype, although there was some response of the IgG2a, IgG2b, and IgG3 subtypes. The antibody titer remained high for 16 weeks postimmunization. Immunized mice and sham-immunized control mice were challenged intranasally with 10(4) CFU of virulent B. melitensis strain 16 M 4 weeks after the second dose of vaccine. The numbers of bacteria in lungs, livers, and spleens at 3 days, 9 days, and 8 weeks postchallenge were determined. Bacteria were found in lungs of all mice on day 3, but there was no disseminated infection of liver or spleen. By day 9, 40% of the mice had infected spleens and livers. At 8 weeks postchallenge, spleens of 25 of 62 immunized mice were infected, compared to 61 of 62 control mice (P < 0.0001). The livers of 12 of 43 immunized mice were infected, compared to 22 of 36 control mice (P = 0.005). In contrast, the lungs of 26 of 46 immunized mice were still infected, compared to 27 of 44 control mice. The numbers of bacterial CFU in lungs of immunized and control animals were identical. These studies show that intranasal immunization with B. melitensis LPS-GBOMP subunit vaccine significantly protects mice against intranasal challenge with virulent B. melitensis. Vaccination reduces bacterial dissemination to spleen and liver but has no effect on the course of lung infection
    corecore