27 research outputs found

    Pathways to social evolution: reciprocity, relatedness, and synergy

    Get PDF
    Many organisms live in populations structured by space and by class, exhibit plastic responses to their social partners, and are subject to non-additive ecological and fitness effects. Social evolution theory has long recognized that all of these factors can lead to different selection pressures but has only recently attempted to synthesize how these factors interact. Using models for both discrete and continuous phenotypes, we show that analyzing these factors in a consistent framework reveals that they interact with one another in ways previously overlooked. Specifically, behavioral responses (reciprocity), genetic relatedness, and synergy interact in non-trivial ways that cannot be easily captured by simple summary indices of assortment. We demonstrate the importance of these interactions by showing how they have been neglected in previous synthetic models of social behavior both within and between species. These interactions also affect the level of behavioral responses that can evolve in the long run; proximate biological mechanisms are evolutionarily stable when they generate enough responsiveness relative to the level of responsiveness that exactly balances the ecological costs and benefits. Given the richness of social behavior across taxa, these interactions should be a boon for empirical research as they are likely crucial for describing the complex relationship linking ecology, demography, and social behavior.Comment: 4 figure

    Speaking of Music and the Counterpoint of Copyright: Addressing Legal Concerns in Making Oral History Available to the Public

    Get PDF
    Oral history provides society with voices and memories of people and communities experiencing events of the past first-hand. Such history is created through interviews; an interview, however, like any other type of intellectual property—once in a fixed form—is subject to copyright law. In order to make oral history available to the public, it is critically important that individuals generating and acquiring oral history materials clearly understand relevant aspects of copyright law. The varied nature of how one may create, use, and acquire oral history materials can present new, surprising, and sometimes baffling legal scenarios that challenge the experience of even the most skilled curators. This iBrief presents and discusses two real-world scenarios that raise various issues related to oral history and copyright law. These scenarios were encountered by curators at Yale University’s Oral History of American Music archive (OHAM), the preeminent organization dedicated to the collection and preservation of recorded memoirs of the creative musicians of our time. The legal concerns raised and discussed throughout this iBrief may be familiar to other stewards of oral history materials and will be worthwhile for all archivists and their counsel to consider when reviewing their practices and policies

    Behavioral Responses in Structured Populations Pave the Way to Group Optimality

    Get PDF
    An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations. We find that group-optimal behaviors can evolve, even without clonal groups, if individuals exhibit appropriate behavioral responses to each other’s actions. The evolution of such behavioral responses, in turn, is predicated on the nature of the proximate behavioral mechanisms. We model a particular class of proximate mechanisms, prosocial preferences, and find that such preferences evolve to sustain maximum group benefit under certain levels of relatedness and certain ecological conditions. Thus, our model demonstrates the fundamental interplay between behavioral responses and relatedness in determining the course of social evolution. We also highlight the crucial role of proximate mechanisms such as prosocial preferences in the evolution of behavioral responses and in facilitating evolutionary transitions in individuality

    Not Just a Theory--The Utility of Mathematical Models in Evolutionary Biology

    Get PDF
    Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use mathematics for this purpose, misunderstandings of the function of proof-of-concept modeling are common. In the hope of facilitating communication, we discuss the role of proof-of-concept modeling in evolutionary biology

    The cell-level perspective in social conflicts in Dictyostelium discoideum

    No full text
    A recommendation – based on reviews by Matthew Herron and Peter Conlin – of the article: Forget, M., Adiba, S. and De Monte, S.(2021) Social conflicts in Dictyostelium discoideum : a matter of scales. HAL, hal-03088868, ver. 2 peer-reviewed and recommended by PCI Evolutionary Biology. https://hal.archives-ouvertes.fr/hal-03088868

    Stags, Hawks, and Doves: Social Evolution Theory and Individual Variation in Cooperation

    No full text

    Sex-Specific Viability, Sex Linkage and Dominance in Genomic Imprinting

    No full text
    Genomic imprinting is a phenomenon by which the expression of an allele at a locus depends on the parent of origin. Two different two-locus evolutionary models are presented in which a second locus modifies the imprinting status of the primary locus, which is under differential selection in males and females. In the first model, a modifier allele that imprints the primary locus invades the population when the average dominance coefficient among females and males is \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}>\frac{1}{2}\end{equation*}\end{document} and selection is weak. The condition for invasion is always heavily contingent upon the extent of dominance. Imprinting is more likely in the sex experiencing weaker selection only under some parameter regimes, whereas imprinting by either sex is equally likely under other regimes. The second model shows that a modifier allele that induces imprinting will increase when imprinting has a direct selective advantage. The results are not qualitatively dependent on whether the modifier locus is autosomal or X linked

    Evolution of Stochastic Switching Rates in Asymmetric Fitness Landscapes

    No full text
    Uncertain environments pose a tremendous challenge to populations: The selective pressures imposed by the environment can change so rapidly that adaptation by mutation alone would be too slow. One solution to this problem is given by the phenomenon of stochastic phenotype switching, which causes genetically uniform populations to be phenotypically heterogenous. Stochastic phenotype switching has been observed in numerous microbial species and is generally assumed to be an adaptive bet-hedging strategy to anticipate future environmental change. We use an explicit population genetic model to investigate the evolutionary dynamics of phenotypic switching rates. We find that whether or not stochastic switching is an adaptive strategy is highly contingent upon the fitness landscape given by the changing environment. Unless selection is very strong, asymmetric fitness landscapes—where the cost of being maladapted is not identical in all environments—strongly select against stochastic switching. We further observe a threshold phenomenon that causes switching rates to be either relatively high or completely absent, but rarely intermediate. Our finding that marginal changes in selection pressures can cause fundamentally different evolutionary outcomes is important in a wide range of fields concerned with microbial bet hedging
    corecore