18 research outputs found
Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites
Low field and high field transport properties of carbon nanotubes/polymer
composites are investigated for different tube fractions. Above the percolation
threshold f_c=0.33%, transport is due to hopping of localized charge carriers
with a localization length xi=10-30 nm. Coulomb interactions associated with a
soft gap Delta_CG=2.5 meV are present at low temperature close to f_c. We argue
that it originates from the Coulomb charging energy effect which is partly
screened by adjacent bundles. The high field conductivity is described within
an electrical heating scheme. All the results suggest that using composites
close to the percolation threshold may be a way to access intrinsic properties
of the nanotubes by experiments at a macroscopic scale.Comment: 4 pages, 5 figures, Submitted to Phys. Rev.
To wet or not to wet: that is the question
Wetting transitions have been predicted and observed to occur for various
combinations of fluids and surfaces. This paper describes the origin of such
transitions, for liquid films on solid surfaces, in terms of the gas-surface
interaction potentials V(r), which depend on the specific adsorption system.
The transitions of light inert gases and H2 molecules on alkali metal surfaces
have been explored extensively and are relatively well understood in terms of
the least attractive adsorption interactions in nature. Much less thoroughly
investigated are wetting transitions of Hg, water, heavy inert gases and other
molecular films. The basic idea is that nonwetting occurs, for energetic
reasons, if the adsorption potential's well-depth D is smaller than, or
comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At
the wetting temperature, Tw, the transition to wetting occurs, for entropic
reasons, when the liquid's surface tension is sufficiently small that the free
energy cost in forming a thick film is sufficiently compensated by the fluid-
surface interaction energy. Guidelines useful for exploring wetting transitions
of other systems are analyzed, in terms of generic criteria involving the
"simple model", which yields results in terms of gas-surface interaction
parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy
Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey
K2's Campaign 9 (K2C9) will conduct a ~3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax for microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST
Recommended from our members
Preparation and calibration of Cf neutron sources at the Oak Ridge National Laboratory
Recommended from our members
Design, construction, and operations experience with the SWSA 6 (Solid Waste Storage Area) Tumulus Disposal Demonstration
Efforts are underway at the Department of Energy facilities in Oak Ridge to improve the performance of radioactive waste disposal facilities. An engineered disposal concept demonstration involving placement of concrete encased waste on a monitored concrete pad with an earthen cover is being conducted. The design, construction, and operations experience with this project, the SWSA 6 Tumulus Disposal Demonstration, is described. 1 fig., 1 tab