6 research outputs found

    User experience of gesture based interfaces:A comparison with traditional interaction methods on pragmatic and hedonic qualities

    No full text
    Studies into gestural interfaces - and interfaces in general - typically focus on pragmatic or usability aspects (e.g., ease of use, learnability). Yet the merits of gesture-based interaction likely go beyond the purely pragmatic and impact a broader class of experiences, involving also qualities such as enjoyment, stimulation, and identification. The current study compared gesture-based interaction with device-based interaction, in terms of both their pragmatic and hedonic qualities. Two experiments were performed, one in a near-field context (mouse vs. gestures), and one in a far-field context (Wii vs. gestures). Results show that, whereas device-based interfaces generally scored higher on perceived performance, and the mouse scored higher on pragmatic quality, embodied interfaces (gesture-based interfaces, but also the Wii) scored higher in terms of hedonic quality and fun. A broader perspective on evaluating embodied interaction technologies can inform the design of such technologies and allow designers to tailor them to the appropriate application.</p

    Time perception and timed decision task performance during passive heat stress

    No full text
    This study investigates the hypotheses that during passive heat stress, the change in perception of time and change in accuracy of a timed decision task relate to changes in thermophysiological variables gastrointestinal temperature and heart rate (HR), as well as subjective measures of cognitive load and thermal perception. Young adult males (N = 29) participated in two 60-min head-out water immersion conditions (36.5°C-neutral and 38.0°C-warm). Cognitive task measurements included accuracy (judgment task), response time (judgment ask), and time estimation (interval timing task). Physiological measurements included gastrointestinal temperature and heart rate. Subjective measurements included cognitive task load (NASA-TLX), rate of perceived exertion, thermal sensation, and thermal comfort. Gastrointestinal temperature and HR were significantly higher in warm versus neutral condition (gastrointestinal temperature: 38.4 ± 0.2°C vs. 37.2 ± 0.2°C, p < 0.01; HR: 105 ± 8 BPM vs. 83 ± 9 BPM, p < 0.01). The change in accuracy was significantly associated with the change in gastrointestinal temperature, and attenuated by change in thermal sensation and change in HR (r2=0.40, p< 0.01). Change in response time was significantly associated with the change in gastrointestinal temperature (r2=0.26, p< 0.002), and change in time estimation was best explained by a change in thermal discomfort (r2=0.18, p< 0.01). Changes in cognitive performance during passive thermal stress are significantly associated with changes in thermophysiological variables and thermal perception. Although explained variance is low (<50%), decreased accuracy is attributed to increased gastrointestinal temperature, yet is attenuated by increased arousal (expressed as increased HR and warmth thermal sensation)

    Time perception and timed decision task performance during passive heat stress

    Get PDF
    This study investigates the hypotheses that during passive heat stress, the change in perception of time and change in accuracy of a timed decision task relate to changes in thermophysiological variables gastrointestinal temperature and heart rate (HR), as well as subjective measures of cognitive load and thermal perception. Young adult males (N = 29) participated in two 60-min head-out water immersion conditions (36.5°C-neutral and 38.0°C-warm). Cognitive task measurements included accuracy (judgment task), response time (judgment ask), and time estimation (interval timing task). Physiological measurements included gastrointestinal temperature and heart rate. Subjective measurements included cognitive task load (NASA-TLX), rate of perceived exertion, thermal sensation, and thermal comfort. Gastrointestinal temperature and HR were significantly higher in warm versus neutral condition (gastrointestinal temperature: 38.4 ± 0.2°C vs. 37.2 ± 0.2°C, p < 0.01; HR: 105 ± 8 BPM vs. 83 ± 9 BPM, p < 0.01). The change in accuracy was significantly associated with the change in gastrointestinal temperature, and attenuated by change in thermal sensation and change in HR (r2=0.40, p< 0.01). Change in response time was significantly associated with the change in gastrointestinal temperature (r2=0.26, p< 0.002), and change in time estimation was best explained by a change in thermal discomfort (r2=0.18, p< 0.01). Changes in cognitive performance during passive thermal stress are significantly associated with changes in thermophysiological variables and thermal perception. Although explained variance is low (<50%), decreased accuracy is attributed to increased gastrointestinal temperature, yet is attenuated by increased arousal (expressed as increased HR and warmth thermal sensation)

    User experience of gesture based interfaces: A comparison with traditional interaction methods on pragmatic and hedonic qualities

    No full text
    Studies into gestural interfaces - and interfaces in general - typically focus on pragmatic or usability aspects (e.g., ease of use, learnability). Yet the merits of gesture-based interaction likely go beyond the purely pragmatic and impact a broader class of experiences, involving also qualities such as enjoyment, stimulation, and identification. The current study compared gesture-based interaction with device-based interaction, in terms of both their pragmatic and hedonic qualities. Two experiments were performed, one in a near-field context (mouse vs. gestures), and one in a far-field context (Wii vs. gestures). Results show that, whereas device-based interfaces generally scored higher on perceived performance, and the mouse scored higher on pragmatic quality, embodied interfaces (gesture-based interfaces, but also the Wii) scored higher in terms of hedonic quality and fun. A broader perspective on evaluating embodied interaction technologies can inform the design of such technologies and allow designers to tailor them to the appropriate application

    Time perception and timed decision task performance during passive heat stress

    No full text
    This study investigates the hypotheses that during passive heat stress, the change in perception of time and change in accuracy of a timed decision task relate to changes in thermophysiological variables gastrointestinal temperature and heart rate (HR), as well as subjective measures of cognitive load and thermal perception. Young adult males (N = 29) participated in two 60-min head-out water immersion conditions (36.5°C-neutral and 38.0°C-warm). Cognitive task measurements included accuracy (judgment task), response time (judgment ask), and time estimation (interval timing task). Physiological measurements included gastrointestinal temperature and heart rate. Subjective measurements included cognitive task load (NASA-TLX), rate of perceived exertion, thermal sensation, and thermal comfort. Gastrointestinal temperature and HR were significantly higher in warm versus neutral condition (gastrointestinal temperature: 38.4 ± 0.2°C vs. 37.2 ± 0.2°C, p < 0.01; HR: 105 ± 8 BPM vs. 83 ± 9 BPM, p < 0.01). The change in accuracy was significantly associated with the change in gastrointestinal temperature, and attenuated by change in thermal sensation and change in HR (r2=0.40, p< 0.01). Change in response time was significantly associated with the change in gastrointestinal temperature (r2=0.26, p< 0.002), and change in time estimation was best explained by a change in thermal discomfort (r2=0.18, p< 0.01). Changes in cognitive performance during passive thermal stress are significantly associated with changes in thermophysiological variables and thermal perception. Although explained variance is low (<50%), decreased accuracy is attributed to increased gastrointestinal temperature, yet is attenuated by increased arousal (expressed as increased HR and warmth thermal sensation)
    corecore